ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Polyphase kinematic history of transpression along the Mecca Hills segment of the San Andreas fault, southern California

Permanent lenke
https://hdl.handle.net/10037/16257
DOI
https://doi.org/10.1130/GES02027.1
Thumbnail
Åpne
article.pdf (20.24Mb)
Publisher`s version (PDF)
Dato
2019-04-09
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Bergh, Steffen G; Sylvester, Arthur G.; Damte, Alula; Indrevær, Kjetil
Sammendrag
Miocene–Pliocene sedimentary rocks in the Mecca Hills, southern California, were uplifted and deformed by transpression along a restraining bend in the San Andreas fault trace between the Orocopia and San Bernardino Mountains in Pleistocene time. This paper presents field evidence for three stages of structural evolution of a complex, asymmetric wedge-like flower structure, expressed as: (1) subhorizontal en échelon folds and faults oblique to the San Andreas fault; (2) steeply plunging folds subparallel to the San Andreas fault; and (3) folds and thrust faults fully parallel to the San Andreas fault. We argue that the resulting flower-structure deformation formed successively from early distributed transpression through full (?) strain partitioning, rather than from active, synchronous, strike-slip–forming movements, as expected. The model is supported by crosscut relations of major folds and faults and strain estimates from minor conjugate shear fracture sets. The polyphase evolution initiated on a steep right-lateral strand of the San Andreas fault, producing thick fault gouge. Then, the adjacent Neogene strata were folded en échelon outward in a uniformly distributed simple shear strain field. The subsidiary Skeleton Canyon fault formed along a restraining bend that localized right-lateral shearing along this fault, and reshaped the en échelon folds into steeply plunging folds almost parallel to the San Andreas fault in a nascent partly partitioned strain field. The final kinematic stage generated SW-verging folds and thrust faults trending parallel to the San Andreas fault and decapitated the en échelon folds and faults. The switch from early, distributed strike-slip to late-stage regional slip-partitioned shortening (fold-thrust) deformation may have been locally induced by the bending geometry of the fault. The polyphase structures were active in successive order to balance the driving forces in one or more critical-angled transpressional and fold-and-thrust uplift wedges. Fault-related shortening, uplift, and erosion are still controlled in the Mecca Hills by combining and adjusting the wedges with low convergence angle, transpression, and lateral crustal motion in a San Andreas fault plate scenario. Our model, therefore, addresses a more nuanced view of a polyphase flower-structure system and highlights the need to more carefully sort out spatially and temporally different kinematic data as a basis for analog and numerical modeling of transpressional uplift areas.
Beskrivelse
Source at https://doi.org/10.1130/GES02027.1.
Forlag
Geological Society of America
Sitering
Bergh, S.G., Sylvester, A.G., Damte, A. & Indrevær, K. (2019). Polyphase kinematic history of transpression along the Mecca Hills segment of the San Andreas fault, southern California. Geosphere, 15(3), 901-934. https://doi.org/10.1130/GES02027.1
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (geovitenskap) [814]

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring