ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs

Permanent lenke
https://hdl.handle.net/10037/16359
DOI
https://doi.org/10.1371/journal.pone.0217541
Thumbnail
Åpne
article.pdf (878.3Kb)
Publisher's version (PDF)
Dato
2019-06-06
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Voets, Mike; Møllersen, Kajsa; Bongo, Lars Ailo
Sammendrag
We have attempted to reproduce the results in Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs, published in JAMA 2016; 316(22), using publicly available data sets. We re-implemented the main method in the original study since the source code is not available. The original study used non-public fundus images from EyePACS and three hospitals in India for training. We used a different EyePACS data set from Kaggle. The original study used the benchmark data set Messidor-2 to evaluate the algorithm’s performance. We used another distribution of the Messidor-2 data set, since the original data set is no longer available. In the original study, ophthalmologists re-graded all images for diabetic retinopathy, macular edema, and image gradability. We have one diabetic retinopathy grade per image for our data sets, and we assessed image gradability ourselves. We were not able to reproduce the original study’s results with publicly available data. Our algorithm’s area under the receiver operating characteristic curve (AUC) of 0.951 (95% CI, 0.947-0.956) on the Kaggle EyePACS test set and 0.853 (95% CI, 0.835-0.871) on Messidor-2 did not come close to the reported AUC of 0.99 on both test sets in the original study. This may be caused by the use of a single grade per image, or different data. This study shows the challenges of reproducing deep learning method results, and the need for more replication and reproduction studies to validate deep learning methods, especially for medical image analysis.
Beskrivelse
Source at https://doi.org/10.1371/journal.pone.0217541.
Tilknyttede forskningsdata

Our code is open sourced under a MIT license: https://github.com/mikevoets/jama16-retina-replication. Our EyePACS and Messidor-2 gradability grades are in the same repository. The data underlying the results presented in the study are available from:

1. Kaggle EyePACS data: https://www.kaggle.com/c/diabetic-retinopathy-detection (a free Kaggle account is required to access the data).

2. Messidor-2 data: https://medicine.uiowa.edu/eye/abramoff (publicly available).

Forlag
PLOS
Sitering
Voets, M., Møllersen, K. & Bongo, L.A. (2019). Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. PLoS ONE, 14(6), e0217541. https://doi.org/10.1371/journal.pone.0217541
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (informatikk) [481]

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring