ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification of Micro-Damage in Piezoelectric Ceramics Using Machine Learning of Ultrasound Signals

Permanent lenke
https://hdl.handle.net/10037/16611
DOI
https://doi.org/10.3390/s19194216
Thumbnail
Åpne
article.pdf (2.677Mb)
published version (PDF)
Dato
2019-09-28
Type
Journal article
Peer reviewed

Forfatter
Tripathi, Gaurav; Anowarul, Habib; Agarwal, Krishna; Prasad, Dilip K.
Sammendrag
Ultrasound based structural health monitoring of piezoelectric material is challenging if a damage changes at a microscale over time. Classifying geometrically similar damages with a difference in diameter as small as 100 m is difficult using conventional sensing and signal analysis approaches. Here, we use an unconventional ultrasound sensing approach that collects information of the entire bulk of the material and investigate the applicability of machine learning approaches for classifying such similar defects.
Our results show that appropriate feature design combined with simple k-nearest neighbor classifier can provide up to 98% classification accuracy even though conventional features for time-series data and a variety of classifiers cannot achieve close to 70% accuracy.
The newly proposed hybrid feature, which combines frequency domain information in the form of power spectral density and time domain information in the form of sign of slope change, is a suitable feature for achieving the best classification accuracy on this challenging problem.
Beskrivelse
Published version, licensed CC BY-NC-ND 4.0. , available at: https://doi.org/10.3390/s19194216
Forlag
Molecular Diversity Preservation International (MDPI)
Sitering
Tripathi, G., Anowarul, H., Agarwal K., Prasad, D.K.(2019) Classification of Micro-Damage in Piezoelectric Ceramics Using Machine Learning of Ultrasound Signals. Sensors, 19, (19),4216. http://dx.doi.org/10.3390/s19194216
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring