ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Relativistic four-component linear damped response TDDFT for electronic absorption and circular dichroism calculations

Permanent link
https://hdl.handle.net/10037/16779
DOI
https://doi.org/10.1063/1.5128564
Thumbnail
View/Open
article.pdf (1.144Mb)
Accepted manuscript version (PDF)
Date
2019-11-21
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Konecny, Lukas; Repisky, Michal; Ruud, Kenneth; Komorovsky, Stanislav
Abstract
We present a detailed theory, implementation, and a benchmark study of a linear damped response time-dependent density functional theory (TDDFT) based on the relativistic four-component (4c) Dirac–Kohn–Sham formalism using the restricted kinetic balance condition for the small-component basis and a noncollinear exchange–correlation kernel. The damped response equations are solved by means of a multifrequency iterative subspace solver utilizing decomposition of the equations according to Hermitian and time-reversal symmetry. This partitioning leads to robust convergence, and the detailed algorithm of the solver for relativistic multicomponent wavefunctions is also presented. The solutions are then used to calculate the linear electric- and magnetic-dipole responses of molecular systems to an electric perturbation, leading to frequency-dependent dipole polarizabilities, electronic absorption, circular dichroism (ECD), and optical rotatory dispersion (ORD) spectra. The methodology has been implemented in the relativistic spectroscopy DFT program ReSpect, and its performance was assessed on a model series of dimethylchalcogeniranes, C4H8X (X = O, S, Se, Te, Po, Lv), and on larger transition metal complexes that had been studied experimentally, [M(phen)3]3+ (M = Fe, Ru, Os). These are the first 4c damped linear response TDDFT calculations of ECD and ORD presented in the literature.
Description
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in The Journal of Chemical Physics, 151(19), 194112, and may be found at https://doi.org/10.1063/1.5128564.
Publisher
AIP Publishing
Citation
Konecny L, Repisky M, Ruud K, Komorovsky S. Relativistic four-component linear damped response TDDFT for electronic absorption and circular dichroism calculations. Journal of Chemical Physics. 2019;151
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (kjemi) [565]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)