ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Performance of data enhancements and training optimization for neural network: A polyp detection case study

Permanent lenke
https://hdl.handle.net/10037/17323
DOI
https://doi.org/10.1109/CBMS.2019.00067
Thumbnail
Åpne
article.pdf (5.122Mb)
Akseptert manusversjon (PDF)
Dato
2019-08-05
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Henriksen, Fredrik Lund; Jensen, Rune; Stensland, Håkon Kvale; Johansen, Dag; Riegler, Michael; Halvorsen, Pål
Sammendrag
Deep learning using neural networks is becoming more and more popular. It is frequently used in areas like video analysis, image retrieval, traffic forecast and speech recognition. In this respect, the learning and training process usually requires a lot of data. However, in many areas, data is scarce which is definitely the case in our medical application scenario, i.e., polyp detection in the gastrointestinal tract. Here, colorectal cancer is on the list of most common cancer types, and often, the cancer arises from benign, adenomatous polyps containing dysplastic cells. Detection and removal of polyps can therefore prevent the development of cancer. Due to high cost, time consumption, patient discomfort and in-accuracy of existing procedures, researchers have started to explore systems for automatic polyp detection to assist and automate current examination procedures. Following the current gained traction for neural networks, and the typical lack of medical data, we explore how data enhancements affect the training and evaluation of the networks in terms of polyp detection accuracy and particularly if it can be used to increase the detection rate. We also experiment with how various training techniques can be used to increase performance. Our experimental results show how data enhancement and training optimization can be used to increase different aspects of the performance, but we also point out mechanisms that have no, and even a negative, effect.
Forlag
IEEE
Sitering
Henriksen, Jensen, Stensland H, Johansen D, Riegler M, Halvorsen P. Performance of data enhancements and training optimization for neural network: A polyp detection case study. IEEE International Symposium on Computer-Based Medical Systems. 2019
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (informatikk) [477]
©2019 IEEE

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring