ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessment of Polarimetric Variability by Distance Geometry for Enhanced Classification of Oil Slicks Using SAR

Permanent link
https://hdl.handle.net/10037/17492
DOI
https://doi.org/10.1109/IGARSS.2019.8899247
Thumbnail
View/Open
article.pdf (1.270Mb)
Accepted manuscript version (PDF)
Date
2019-11-14
Type
Peer reviewed
Chapter
Bokkapittel

Author
Marinoni, Andrea; Espeseth, Martine; Gamba, Paolo; Brekke, Camilla; Eltoft, Torbjørn
Abstract
In this paper, we introduce a new approach for investigation of polarimetric Synthetic Aperture Radar (PolSAR) images for oil slick analysis. Our method aims at enhancing discrimination of oil types by exploring the polarimetric features that can be produced by processing PolSAR scenes without dimensionality reduction. Taking advantage of a mixture description of the interactions among classes within the dataset and a characterization of their intra- and inter-class variability, our algorithm is able to quantify the areal coverage of different elements. These estimates can be used to hence improve classification. Experimental results on a PolSAR dataset acquired by unmanned aerial vehicle (UAV) on oil slicks in open water show the capacity of our method.
Publisher
IEEE (Institute of Electrical and Electronics Engineers)
Citation
Marinoni A, Espeseth M, Gamba P, Brekke C, Eltoft T. (2019) Assessment of Polarimetric Variability by Distance Geometry for Enhanced Classification of Oil Slicks Using SAR. IEEE International Geoscience and Remote Sensing Symposium proceedings, 2019 , 5217-5220.
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]
©2019 IEEE

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)