Vis enkel innførsel

dc.contributor.authorDey, Somdip
dc.contributor.authorSingh, Amit Kumar
dc.contributor.authorPrasad, Dilip K.
dc.contributor.authorMcDonald-Maier, Klaus D.
dc.date.accessioned2020-03-09T09:30:19Z
dc.date.available2020-03-09T09:30:19Z
dc.date.issued2019-10-24
dc.description.abstractAutomated feature extraction from program source-code such that proper computing resources could be allocated to the program is very difficult given the current state of technology. Therefore, conventional methods call for skilled human intervention in order to achieve the task of feature extraction from programs. This research is the first to propose a novel human-inspired approach to automatically convert program source-codes to visual images. The images could be then utilized for automated classification by visual convolutional neural network (CNN) based algorithm. Experimental results show high prediction accuracy in classifying the types of program in a completely automated manner using this approach.en_US
dc.identifier.citationDey, Singh, Prasad DK, Klaus. SoCodeCNN: Program Source Code for Visual CNN Classification Using Computer Vision Methodology. IEEE Access. 2019;7en_US
dc.identifier.cristinIDFRIDAID 1745531
dc.identifier.doi10.1109/ACCESS.2019.2949483
dc.identifier.issn2169-3536
dc.identifier.urihttps://hdl.handle.net/10037/17668
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.journalIEEE Access
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2019 The Author(s)en_US
dc.subjectVDP::Technology: 500en_US
dc.subjectVDP::Teknologi: 500en_US
dc.titleSoCodeCNN: Program Source Code for Visual CNN Classification Using Computer Vision Methodologyen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel