Dispersionless integrable hierarchies and GL(2,R) geometry
Permanent link
https://hdl.handle.net/10037/17940Date
2019-10-08Type
Journal articleTidsskriftartikkel
Peer reviewed
Abstract
Dispersionless hierarchies provide explicit examples of particularly interesting classes of involutive GL(2, ℝ) structures studied in the literature. Thus, we obtain torsion-free GL(2, ℝ) structures of Bryant [5] that appeared in the context of exotic holonomy in dimension four, as well as totally geodesic GL(2, ℝ) structures of Krynski [33]. The latter possess a compatible affine connection (with torsion) and a two-parameter family of totally geodesic α-manifolds (coming from the dispersionless Lax equations), which makes them a natural generalisation of the Einstein–Weyl geometry.
Our main result states that involutive GL(2, ℝ) structures are governed by a dispersionless integrable system whose general local solution depends on 2n – 4 arbitrary functions of 3 variables. This establishes integrability of the system of Wünschmann conditions.