Show simple item record

dc.contributor.authorEtzelmüller, Bernd
dc.contributor.authorPatton, Henry
dc.contributor.authorSchomacker, Anders
dc.contributor.authorCzekirda, Justyna
dc.contributor.authorGirod, Luc
dc.contributor.authorHubbard, Alun Lloyd
dc.contributor.authorLilleøren, Karianne Staalesen
dc.contributor.authorWestermann, Sebastian
dc.date.accessioned2020-04-02T10:55:15Z
dc.date.available2020-04-02T10:55:15Z
dc.date.issued2020-03-14
dc.description.abstractIceland’s periglacial realm is one of the most dynamic on the planet, with active geomorphologicalprocesses and high weathering rates of young bedrock resulting in high sediment yields and ongoingmass movement. Permafrost is discontinuous in Iceland’s highlands and mountains over c. 800 m a.s.l,and sporadic in palsa mires in the central highlands. During the late Pleistocene and Holocene, Iceland’speriglacial environment varied considerably in time and space, dominated by glacialfluctuations andperiglacial processes. To evaluate the dynamics of permafrost in Iceland since the last deglaciation, weuse the output of a coupled climate/ice sheet model to force a transient permafrost model (CryoGRID 2)from the Last Glacial Maximum (LGM) through to the present. Wefind that permafrost was widespreadacross the deglaciated areas of western, northern and eastern Iceland after the LGM, and that up to 20% ofIceland’s terrestrial area was underlain by permafrost throughout the late Pleistocene. This influencedgeomorphological processes and landform generation: the early collapse of the marine-based ice sheettogether with the aggradation of permafrost in these zones initiated the formation of abundant and nowrelict rock glaciers across coastal margins. Permafrost degraded rapidly after the Younger Dryas, with amarked impact on slope stability. Permafrost that formed during the Little Ice Age is again thawingrapidly, and an escalation in slope failure and mass-movement might be currently underway. Our studydemonstrates that large regions of Iceland have been underlain by permafrost for millennia, facilitatinglandform development and influencing the stability of steep slopes.en_US
dc.identifier.citationEtzelmüller, Patton, Schomacker, Czekirda, Girod, Hubbard, Lilleøren, Westermann. Icelandic permafrost dynamics since the Last Glacial Maximum – model results and geomorphological implications. Quaternary Science Reviews. 2020;233:1-15en_US
dc.identifier.cristinIDFRIDAID 1802339
dc.identifier.doi10.1016/j.quascirev.2020.106236
dc.identifier.issn0277-3791
dc.identifier.issn1873-457X
dc.identifier.urihttps://hdl.handle.net/10037/17981
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalQuaternary Science Reviews
dc.relation.projectIDNorges forskningsråd: 223259en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/SFF/223259/Norway/Centre for Arctic Gas Hydrate, Environment and Climate/CAGE/en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 The Author(s)en_US
dc.subjectVDP::Mathematics and natural science: 400::Geosciences: 450en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Geofag: 450en_US
dc.titleIcelandic permafrost dynamics since the Last Glacial Maximum – model results and geomorphological implicationsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record