ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

K-CUSUM: Cluster Detection Mechanism in EDMON

Permanent lenke
https://hdl.handle.net/10037/18060
Thumbnail
Åpne
article.pdf (1.349Mb)
Publisert versjon (PDF)
Dato
2019-11
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Yeng, Prosper; Woldaregay, Ashenafi Zebene; Hartvigsen, Gunnar
Sammendrag
The main goal of the EDMON (Electronic Disease Monitoring Network) project is to detect the spread of contagious diseases at the earliest possible moment, and potentially before people know that they have been infected. The results shall be visualized on real-time maps as well as presented in digital communication. In this paper, a hybrid of K-nearness Neighbor (KNN) and cumulative sum (CUSUM), known as K-CUSUM, were explored and implemented with a prototype approach. The KNN algorithm, which was implemented in the K- CUSUM, recorded 99.52% accuracy when it was tested with simulated dataset containing geolocation coordinates among other features and SckitLearn KNN algorithm achieved an accuracy of 93.81% when it was tested with the same dataset. After injection of spikes of known outbreaks in the simulated data, the CUSUM module was totally specific and sensitive by correctly identifying all outbreaks and non-outbreak clusters. Suitable methods for obtaining a balance point of anonymizing geolocation attributes towards obscuring the privacy and confidentiality of diabetes subjects’ trajectories while maintaining the data requirements for public good, in terms of disease surveillance, remains a challenge.
Beskrivelse
Source at https://www.ep.liu.se/ecp/contents.asp?issue=161.
Forlag
LiU: Linköping University Electronic Press
Sitering
Yeng PK, Woldaregay AZ, Hartvigsen G. K-CUSUM: Cluster Detection Mechanism in EDMON. Linköping Electronic Conference Proceedings. 2019;161(024):141-147
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (informatikk) [481]
Copyright 2019 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring