Thin Wall Structure by Welding
Permanent link
https://hdl.handle.net/10037/18108View/ Open
(PDF)
(Microsoft Excel 2007)
(PDF)
Date
2019-06-28Type
Master thesisMastergradsoppgave
Author
Arumairasa, Hans IvarAbstract
Manufacturing of thin wall structure by wire arc additive manufacturing (WAAM) is on the main application of additive manufacturing. 3D-printing technology has significant advantages over traditional milling and machining techniques or welded analogs. Thin wall structure constitutes an essential and growing proportion of engineering construction, within common areas as in structural aerospace and large scale-components. The dissertation utilized a layer-wise production technique known as gas arc tungsten arc welding (GTAW), performed by a programmed KUKA-30 robot. The thesis aspect of welded structures is the degree of how disposable the product is after manufactured, due to the different set of welding parameters. Therefore are an investigation of residual stresses and deformation implemented by different structure geometries. The research includes two practical and analytical experiment tests in addition to an FEA-simulation. The experiments involve; ultrasound measurement by a self-programmed measuring device developed by BiT, calculation due to measured deformation along the welding length and simulation performed in ANSYS. Findings of the methods implicate an estimated value of residual stresses and distortion in the thin wall structure and substrate. Through ten tests of the welding process can the technique of this technology state as slow with frequently sources of error, using the KUKA-30 robot welding system for a certain height. The level of residual stresses depends on the severity of the manufacturing process, which this research confirmed a generally low value along the length of the structural components and base plate due to the parameters developed in this study.
Publisher
UiT Norges arktiske universitetUiT The Arctic University of Norway
Metadata
Show full item recordCollections
Copyright 2019 The Author(s)
The following license file are associated with this item: