Vis enkel innførsel

dc.contributor.authorMurray, Brian
dc.contributor.authorPerera, Lokukaluge Prasad
dc.date.accessioned2020-05-25T07:57:42Z
dc.date.available2020-05-25T07:57:42Z
dc.date.issued2020-05-21
dc.description.abstractAdvances in artificial intelligence are driving the development of intelligent transportation systems, with the purpose of enhancing the safety and efficiency of such systems. One of the most important aspects of maritime safety is effective collision avoidance. In this study, a novel dual linear autoencoder approach is suggested to predict the future trajectory of a selected vessel. Such predictions can serve as a decision support tool to evaluate the future risk of ship collisions. Inspired by generative models, the method suggests to predict the future trajectory of a vessel based on historical AIS data. Using unsupervised learning to facilitate trajectory clustering and classification, the method utilizes a cluster of historical AIS trajectories to predict the trajectory of a selected vessel. Similar methods predict future states iteratively, where states are dependent upon the prior predictions. The method in this study, however, suggests predicting an entire trajectory, where all states are predicted jointly. Further, the method estimates a latent distribution of the possible future trajectories of the selected vessel. By sampling from this distribution, multiple trajectories are predicted. The uncertainties of the predicted vessel positions are also quantified in this study.en_US
dc.identifier.citationMurray B, Perera LP. A dual linear autoencoder approach for vessel trajectory prediction using historical AIS data. Ocean Engineering. 2020en_US
dc.identifier.cristinIDFRIDAID 1812110
dc.identifier.doi10.1016/j.oceaneng.2020.107478
dc.identifier.issn0029-8018
dc.identifier.issn1873-5258
dc.identifier.urihttps://hdl.handle.net/10037/18366
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofMurray, B. (2021). Machine Learning for Enhanced Maritime Situation Awareness: Leveraging Historical AIS Data for Ship Trajectory Prediction. (Doctoral thesis). <a href=https://hdl.handle.net/10037/20984>https://hdl.handle.net/10037/20984</a>
dc.relation.journalOcean Engineering
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 The Author(s)en_US
dc.subjectVDP::Technology: 500en_US
dc.subjectVDP::Teknologi: 500en_US
dc.titleA dual linear autoencoder approach for vessel trajectory prediction using historical AIS dataen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel