Vis enkel innførsel

dc.contributor.authorPaiste, Kärt
dc.contributor.authorLepland, Aivo
dc.contributor.authorZerkle, Aubrey L.
dc.contributor.authorKirsimae, Kalle
dc.contributor.authorKreitsmann, Timmu
dc.contributor.authorMänd, Kaarel
dc.contributor.authorRomashkin, Alexander E.
dc.contributor.authorRychanchik, Dimitry V.
dc.contributor.authorPrave, Anthony R
dc.date.accessioned2020-06-16T10:07:49Z
dc.date.available2020-06-16T10:07:49Z
dc.date.issued2020-06-03
dc.description.abstractPaleoproterozoic sedimentary successions are important archives of the redox evolution of Earth’s atmosphere and oceans. Efforts to unravel the dynamics of our planet’s early oxygenation from this archive rely on various geochemical proxies, including stable carbon and sulfur isotopes. However, ancient metasedimentary rocks often experienced early- and late-stage (bio)geochemical processes making it difficult to discern primary environmental signals from bulk-rock δ<sup>13</sup>C<sub>org</sub> and δ<sup>34</sup>S values. Such complexity in carbon and sulfur isotope systematics contributes to uncertainty about the redox structure of Paleoproterozoic oceans. A currently popular idea is that, following the Great Oxidation Event, global changes led to low-oxygen environments and temporally fluctuating ocean redox conditions that lasted until the Neoproterozoic. The volcano-sedimentary rocks of the Onega Basin have figured prominently in this concept, particularly the exceptionally organic-rich rocks of the 1.98 Ga Zaonega Formation. However, a growing body of evidence shows that local depositional processes acted to form the δ<sup>13</sup>C<sub>org</sub> and pyrite δ<sup>34</sup>S records of the Zaonega Formation, thus calling for careful assessment of the global significance of these isotope records. Placing new and existing organic carbon and sulfur isotope data from the Zaonega Formation into the context of basin history and by comparing those results with key Paleoproterozoic successions of the Francevillian Basin (Gabon), the Pechenga Greenstone Belt (NW Russia) and the Animikie Basin (Canada), we show that the stratigraphic δ<sup>13</sup>C<sub>org</sub> and pyrite δ<sup>34</sup>S trends can be explained by local perturbations in biogeochemical carbon and sulfur cycling without requiring global drivers. Despite their temporal disparity, we also demonstrate that individual successions share certain geological traits (e.g. magmatic and/or tectonic activity, hydrocarbon generation, basin restriction) suggesting that their pyrite δ<sup>34</sup>S and δ<sup>13</sup>C<sub>org</sub> trends were governed by common underlying mechanisms (e.g. similar basinal evolution and biogeochemical feedbacks) and are not necessarily unique to certain time intervals. We further show that pyrites in these successions that are most likely to capture ambient seawater sulfate isotopic composition have consistent δ<sup>34</sup>S values of 15–18‰, which hints at remarkable stability in the marine sulfur cycle over most of the Paleoproterozoic Era.en_US
dc.descriptionAccepted manuscript version, licensed <a href=http://creativecommons.org/licenses/by-nc-nd/4.0/> CC BY-NC-ND 4.0. </a>en_US
dc.identifier.citationPaiste K, Lepland A, Zerkle AL, Kirsimae K, Kreitsmann T, Mänd K, Romashkin AE, Rychanchik DV, Prave AR. Identifying global vs. basinal controls on Paleoproterozoic organic carbon and sulfur isotope records. Earth-Science Reviews. 2020en_US
dc.identifier.cristinIDFRIDAID 1814703
dc.identifier.doi10.1016/j.earscirev.2020.103230
dc.identifier.issn0012-8252
dc.identifier.issn1872-6828
dc.identifier.urihttps://hdl.handle.net/10037/18557
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalEarth-Science Reviews
dc.relation.projectIDNorges forskningsråd: 223259en_US
dc.relation.projectIDAndre: PRG447en_US
dc.relation.projectIDAndre: MOBJD542en_US
dc.relation.projectIDAndre: NE/J023485/2en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/SFF/223259/Norway/Centre for Arctic Gas Hydrate, Environment and Climate/CAGE/en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holder© 2020 Elsevier B.V. All rights reserved.en_US
dc.subjectVDP::Mathematics and natural science: 400en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400en_US
dc.subjectVDP::Mathematics and natural science: 400::Geosciences: 450en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Geofag: 450en_US
dc.titleIdentifying global vs. basinal controls on Paleoproterozoic organic carbon and sulfur isotope recordsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel