dc.contributor.author | Schmoll, Tim | |
dc.contributor.author | Rudolfsen, Geir | |
dc.contributor.author | Schielzeth, Holger | |
dc.contributor.author | Kleven, Oddmund | |
dc.date.accessioned | 2020-08-24T10:14:47Z | |
dc.date.available | 2020-08-24T10:14:47Z | |
dc.date.issued | 2020-07-15 | |
dc.description.abstract | In species with internal fertilization, the female genital tract appears challenging to sperm, possibly resulting from selection on for example ovarian fluid to control sperm behaviour and, ultimately, fertilization. Few studies, however, have examined the effects of swimming media viscosities on sperm performance. We quantified effects of media viscosities on sperm velocity in promiscuous willow warblers Phylloscopus trochilus. We used both a reaction norm and a character-state approach to model phenotypic plasticity of sperm behaviour across three experimental media of different viscosities. Compared with a standard medium (Dulbecco's Modified Eagle Medium, DMEM), media enriched with 1% or 2% w/v methyl cellulose decreased sperm velocity by up to about 50%. Spermatozoa from experimental ejaculates of different males responded similarly to different viscosities, and a lack of covariance between elevations and slopes of individual velocity-by-viscosity reaction norms indicated that spermatozoa from high- and low-velocity ejaculates were slowed down by a similar degree when confronted with high-viscosity environments. Positive cross-environment (1% versus 2% cellulose) covariances of sperm velocity under the character-state approach suggested that sperm performance represents a transitive trait, with rank order of individual ejaculates maintained when expressed against different environmental backgrounds. Importantly, however, a lack of significant covariances in sperm velocity involving a cellulose concentration of 0% indicated that pure DMEM represented a qualitatively different environment, questioning the validity of this widely used standard medium for assaying sperm performance. Enriching sperm environments along ecologically relevant gradients prior to assessing sperm performance will strengthen explanatory power of in vitro studies of sperm behaviour. | en_US |
dc.identifier.citation | Schmoll T, Rudolfsen G, Schielzeth H, Kleven O. Sperm velocity in a promiscuous bird across experimental media of different viscosities. Proceedings of the Royal Society of London. Biological Sciences. 2020 | en_US |
dc.identifier.cristinID | FRIDAID 1820625 | |
dc.identifier.doi | 10.1098/rspb.2020.1031 | |
dc.identifier.issn | 0962-8452 | |
dc.identifier.issn | 1471-2954 | |
dc.identifier.uri | https://hdl.handle.net/10037/19125 | |
dc.language.iso | eng | en_US |
dc.publisher | The Royal Society | en_US |
dc.relation.journal | Proceedings of the Royal Society of London. Biological Sciences | |
dc.relation.projectID | Egen institusjon: The Norwegian institute for nature research (NINA) | en_US |
dc.relation.projectID | Andre: The Fram Centre | en_US |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2020 The Author(s) | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Zoology and botany: 480 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480 | en_US |
dc.title | Sperm velocity in a promiscuous bird across experimental media of different viscosities | en_US |
dc.type.version | acceptedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |