ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Redox fluctuations, trace metal enrichment and phosphogenesis in the ~2.0 Ga Zaonega Formation

Permanent link
https://hdl.handle.net/10037/19229
DOI
https://doi.org/10.1016/j.precamres.2020.105716
Thumbnail
View/Open
article.pdf (2.544Mb)
Accepted manuscript version licensed CC BY-NC-ND (PDF)
Date
2020-03-24
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Kipp, Michael A.; Lepland, Aivo; Buick, Roger
Abstract
The ~2.0 Ga Zaonega Formation (ZF) holds one of the oldest phosphorites in the geologic record, reaching >15% P2O5. Understanding the depositional conditions that enabled sedimentary phosphorus enrichment in this unit will thus help us to interpret the significance of the temporal distribution of phosphorites in Earth’s early history. Here we use an array of major and trace element data to constrain the redox conditions in the water column and extent of basinal restriction during deposition of the ZF. We also present new selenium (Se) abundance and isotopic data to provide firmer constraints on fluctuations across high redox potentials, which might be critical for phosphogenesis. We find that Se isotope ratios shift over a range of ~3‰ in the ZF, with the earliest stratigraphically-resolved negative Se isotope excursion in the geologic record, implying at least temporarily suboxic waters in the basin. Furthermore, we find that redox-sensitive element (RSE) enrichments coincide with episodes of P enrichment, thereby implicating a common set of environmental controls on these processes. Together, our dataset implies deposition under a predominantly anoxic water column with periodic fluctuations to more oxidizing conditions because of connections to a large oxic reservoir containing Se oxyanions (and other RSE’s, as well as sulfate) in the open ocean. This is broadly consistent with the depositional setting of many modern and recent phosphorites, thereby tying these ancient deposits to a common depositional mechanism. In light of these data, we propose that the broader prevalence of phosphogenesis in the Paleoproterozoic Era was driven by growth of the seawater oxidant reservoir (namely sulfate), thus enabling diagenetic apatite precipitation in basins with high rates of export production, particularly by facilitating the activity of sulfide-oxidizing bacteria. This suggests that the muted authigenic P burial observed in marginal, marine siliciclastic sedimentary rocks during other intervals of the Precambrian was not merely a result of low dissolved P levels in the global deep ocean, but also was influenced by sulfate scarcity and strongly reducing bottom-water conditions.
Publisher
Elsevier
Citation
Kipp, Lepland A, Buick. Redox fluctuations, trace metal enrichment and phosphogenesis in the ~2.0 Ga Zaonega Formation. Precambrian Research. 2020;343:105716:1-15
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (geovitenskap) [808]
Copyright 2020 Elsevier B.V.

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)