ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reservoir computing approaches for representation and classification of multivariate time series

Permanent lenke
https://hdl.handle.net/10037/19273
DOI
https://doi.org/10.1109/TNNLS.2020.3001377
Thumbnail
Åpne
article.pdf (738.7Kb)
Akseptert manusversjon (PDF)
Dato
2020-06-29
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Bianchi, Filippo Maria; Scardapane, Simone; Løkse, Sigurd; Jenssen, Robert
Sammendrag
Classification of multivariate time series (MTS) has been tackled with a large variety of methodologies and applied to a wide range of scenarios. Reservoir computing (RC) provides efficient tools to generate a vectorial, fixed-size representation of the MTS that can be further processed by standard classifiers. Despite their unrivaled training speed, MTS classifiers based on a standard RC architecture fail to achieve the same accuracy of fully trainable neural networks. In this article, we introduce the reservoir model space, an unsupervised approach based on RC to learn vectorial representations of MTS. Each MTS is encoded within the parameters of a linear model trained to predict a low-dimensional embedding of the reservoir dynamics. Compared with other RC methods, our model space yields better representations and attains comparable computational performance due to an intermediate dimensionality reduction procedure. As a second contribution, we propose a modular RC framework for MTS classification, with an associated open-source Python library. The framework provides different modules to seamlessly implement advanced RC architectures. The architectures are compared with other MTS classifiers, including deep learning models and time series kernels. Results obtained on the benchmark and real-world MTS data sets show that RC classifiers are dramatically faster and, when implemented using our proposed representation, also achieve superior classification accuracy
Sitering
Bianchi, .F.M; Scardapane, S.; Løkse, S.; Jenssen, R. (2020) Reservoir computing approaches for representation and classification of multivariate time series. In IEEE Transactions on Neural Networks and Learning Systems , https://doi.org/10.1109/TNNLS.2020.3001377
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (matematikk og statistikk) [355]
Copyright 2020 IEEE

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring