dc.contributor.author | Borgli, Hanna | |
dc.contributor.author | Thambawita, Vajira | |
dc.contributor.author | Smedsrud, Pia H | |
dc.contributor.author | Hicks, Steven | |
dc.contributor.author | Jha, Debesh | |
dc.contributor.author | Eskeland, Sigrun Losada | |
dc.contributor.author | Randel, Kristin Ranheim | |
dc.contributor.author | Pogorelov, Konstantin | |
dc.contributor.author | Lux, Mathias | |
dc.contributor.author | Dang Nguyen, Duc Tien | |
dc.contributor.author | Johansen, Dag | |
dc.contributor.author | Griwodz, Carsten | |
dc.contributor.author | Stensland, Håkon Kvale | |
dc.contributor.author | Garcia-Ceja, Enrique | |
dc.contributor.author | Schmidt, Peter T | |
dc.contributor.author | Hammer, Hugo Lewi | |
dc.contributor.author | Riegler, Michael | |
dc.contributor.author | Halvorsen, Pål | |
dc.contributor.author | de Lange, Thomas | |
dc.date.accessioned | 2021-01-23T19:28:59Z | |
dc.date.available | 2021-01-23T19:28:59Z | |
dc.date.issued | 2020-08-28 | |
dc.description.abstract | Artificial intelligence is currently a hot topic in medicine. However, medical data is often sparse and hard to obtain due to legal restrictions and lack of medical personnel for the cumbersome and tedious process to manually label training data. These constraints make it difficult to develop systems for automatic analysis, like detecting disease or other lesions. In this respect, this article presents <i>HyperKvasir</i>, the largest image and video dataset of the gastrointestinal tract available today. The data is collected during real gastro- and colonoscopy examinations at Bærum Hospital in Norway and partly labeled by experienced gastrointestinal endoscopists. The dataset contains 110,079 images and 374 videos, and represents anatomical landmarks as well as pathological and normal findings. The total number of images and video frames together is around 1 million. Initial experiments demonstrate the potential benefits of artificial intelligence-based computer-assisted diagnosis systems. The <i>HyperKvasir</i> dataset can play a valuable role in developing better algorithms and computer-assisted examination systems not only for gastro- and colonoscopy, but also for other fields in medicine. | en_US |
dc.identifier.citation | Borgli H, Thambawita V, Smedsrud PH, Hicks S, Jha D, Eskeland SL, Randel KR, Pogorelov K, Lux M, Dang Nguyen DT, Johansen D, Griwodz C, Stensland H, Garcia-Ceja E, Schmidt PT, Hammer HL, Riegler M, Halvorsen P, de Lange. HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Scientific Data. 2020 | en_US |
dc.identifier.cristinID | FRIDAID 1833194 | |
dc.identifier.doi | 10.1038/s41597-020-00622-y | |
dc.identifier.issn | 2052-4463 | |
dc.identifier.uri | https://hdl.handle.net/10037/20442 | |
dc.language.iso | eng | en_US |
dc.publisher | Springer Nature | en_US |
dc.relation.ispartof | Jha, D. (2022). Machine Learning-based Classification, Detection, and Segmentation of Medical Images. (Doctoral thesis). <a href=https://hdl.handle.net/10037/23693>https://hdl.handle.net/10037/23693</a>. | |
dc.relation.journal | Scientific Data | |
dc.relation.projectID | info:eu-repo/grantAgreement/RCN/IKTPLUSS/263248/Norway/Protecting Shared Data with Privacy Automatons/Privaton/ | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/RCN/BIA/282315/Norway/Automatic Anomaly Detection in Video Capsule Endoscopy/AutoCap/ | en_US |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2020 The Author(s) | en_US |
dc.subject | VDP::Medical disciplines: 700::Clinical medical disciplines: 750::Gastroenterology: 773 | en_US |
dc.subject | VDP::Medisinske Fag: 700::Klinisk medisinske fag: 750::Gasteroenterologi: 773 | en_US |
dc.subject | VDP::Technology: 500::Medical technology: 620 | en_US |
dc.subject | VDP::Teknologi: 500::Medisinsk teknologi: 620 | en_US |
dc.title | HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |