Vis enkel innførsel

dc.contributor.authorGrundvåg, Sten-Andreas
dc.contributor.authorJelby, Mads Engholm
dc.contributor.authorOlaussen, Snorre
dc.contributor.authorSliwinska, Kasia
dc.date.accessioned2021-02-09T22:47:45Z
dc.date.available2021-02-09T22:47:45Z
dc.date.issued2020-08-13
dc.description.abstractThe dominance of isotropic hummocky cross‐stratification, recording deposition solely by oscillatory flows, in many ancient storm‐dominated shoreface–shelf successions is enigmatic. Based on conventional sedimentological investigations, this study shows that storm deposits in three different and stratigraphically separated siliciclastic sediment wedges within the Lower Cretaceous succession in Svalbard record various depositional processes and principally contrasting sequence stratigraphic architectures. The lower wedge is characterized by low, but comparatively steeper, depositional dips than the middle and upper wedges, and records a change from storm‐dominated offshore transition – lower shoreface to storm‐dominated prodelta – distal delta front deposits. The occurrence of anisotropic hummocky cross‐stratification sandstone beds, scour‐and‐fill features of possible hyperpycnal‐flow origin, and wave‐modified turbidites within this part of the wedge suggests that the proximity to a fluvio‐deltaic system influenced the observed storm‐bed variability. The mudstone‐dominated part of the lower wedge records offshore shelf deposition below storm‐wave base. In the middle wedge, scours, gutter casts and anisotropic hummocky cross‐stratified storm beds occur in inferred distal settings in association with bathymetric steps situated across the platform break of retrogradationally stacked parasequences. These steps gave rise to localized, steeper‐gradient depositional dips which promoted the generation of basinward‐directed flows that occasionally scoured into the underlying seafloor. Storm‐wave and tidal current interaction promoted the development and migration of large‐scale, compound bedforms and smaller‐scale hummocky bedforms preserved as anisotropic hummocky cross‐stratification. The upper wedge consists of thick, seaward‐stepping successions of isotropic hummocky cross‐stratification‐bearing sandstone beds attributed to progradation across a shallow, gently dipping ramp‐type shelf. The associated distal facies are characterized by abundant lenticular, wave ripple cross‐laminated sandstone, suggesting that the basin floor was predominantly positioned above, but near, storm‐wave base. Consequently, shelf morphology and physiography, and the nature of the feeder system (for example, proximity to deltaic systems) are inferred to exert some control on storm‐bed variability and the resulting stratigraphic architecture.en_US
dc.identifier.citationGrundvåg, Jelby, Olaussen, Sliwinska. The role of shelf morphology on storm-bed variability and stratigraphic architecture, Lower Cretaceous, Svalbard. Sedimentology. 2020:1-42en_US
dc.identifier.cristinIDFRIDAID 1833782
dc.identifier.doi10.1111/sed.12791
dc.identifier.issn0037-0746
dc.identifier.issn1365-3091
dc.identifier.urihttps://hdl.handle.net/10037/20549
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.journalSedimentology
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/PETROSENTR/228107/Norway/Research Centre for Arctic Petroleum Exploration/ARCEx/en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 The Author(s)en_US
dc.subjectVDP::Mathematics and natural science: 400::Geosciences: 450::Sedimentology: 456en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Sedimentologi: 456en_US
dc.titleThe role of shelf morphology on storm-bed variability and stratigraphic architecture, Lower Cretaceous, Svalbarden_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel