Vis enkel innførsel

dc.contributor.authorMyhre, Jonas Nordhaug
dc.contributor.authorTejedor Hernandez, Miguel Angel
dc.contributor.authorLaunonen, Ilkka Kalervo
dc.contributor.authorEl Fathi, Anas
dc.contributor.authorGodtliebsen, Fred
dc.date.accessioned2021-03-09T08:47:55Z
dc.date.available2021-03-09T08:47:55Z
dc.date.issued2020-09-11
dc.description.abstractIn this paper, we test and evaluate policy gradient reinforcement learning for automated blood glucose control in patients with Type 1 Diabetes Mellitus. Recent research has shown that reinforcement learning is a promising approach to accommodate the need for individualized blood glucose level control algorithms. The motivation for using policy gradient algorithms comes from the fact that adaptively administering insulin is an inherently continuous task. Policy gradient algorithms are known to be superior in continuous high-dimensional control tasks. Previously, most of the approaches for automated blood glucose control using reinforcement learning has used a finite set of actions. We use the Trust-Region Policy Optimization algorithm in this work. It represents the state of the art for deep policy gradient algorithms. The experiments are carried out in-silico using the Hovorka model, and stochastic behavior is modeled through simulated carbohydrate counting errors to illustrate the full potential of the framework. Furthermore, we use a model-free approach where no prior information about the patient is given to the algorithm. Our experiments show that the reinforcement learning agent is able to compete with and sometimes outperform state-of-the-art model predictive control in blood glucose regulation.en_US
dc.identifier.citationMyhre, Tejedor Hernandez, Launonen, El Fathi, Godtliebsen. In-Silico Evaluation of Glucose Regulation Using Policy Gradient Reinforcement Learning for Patients with Type 1 Diabetes Mellitus. Applied Sciences. 2020en_US
dc.identifier.cristinIDFRIDAID 1861768
dc.identifier.doi10.3390/app10186350
dc.identifier.issn2076-3417
dc.identifier.urihttps://hdl.handle.net/10037/20656
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.ispartofTejedor Hernández, M.Á. (2021). Glucose Regulation for In-Silico Type 1 Diabetes Patients Using Reinforcement Learning. (Doctoral thesis). <a href=https://hdl.handle.net/10037/20861>https://hdl.handle.net/10037/20861</a>.
dc.relation.journalApplied Sciences
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 The Author(s)en_US
dc.subjectVDP::Technology: 500en_US
dc.subjectVDP::Teknologi: 500en_US
dc.titleIn-Silico Evaluation of Glucose Regulation Using Policy Gradient Reinforcement Learning for Patients with Type 1 Diabetes Mellitusen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel