ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electromagnetic modeling of damaged fiber-reinforced laminates

Permanent link
https://hdl.handle.net/10037/20755
DOI
https://doi.org/10.1016/j.jcp.2020.109318
Thumbnail
View/Open
article.pdf (948.1Kb)
Accepted manuscript version licensed CC BY-NC-ND. (PDF)
Date
2020-05-15
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Liu, Zicheng; Li, Changyou; Zhong, Yu; Lesselier, Dominique
Abstract
As a prerequisite to nondestructive testing of damaged fibered laminates, the Green's function, corresponding with an undamaged structure, and the electromagnetic fields associated with the damaged one are investigated herein. For the undamaged fibered laminate, benefiting from the periodicity of the fibers within each layer, the field solution follows the scattering-matrix-based method using the Floquet theorem. Yet, the periodicity is destroyed by the analytical source (for the Green's function) or by damages, and the Floquet theorem cannot be directly applied to compute the associated scattering matrices. The array scanning method is introduced to that effect. Inserting fictitious sources to get a quasi-periodic source array, the modeling approach for undamaged laminates can be used to compute the field with the source array, the integration of which cancels the effects of the fictitious sources and yields the Green's function. With the multipole method, field disturbances by damages, which include missing, displaced, shrunk, and expanded fibers and circular inclusions inside fibers, are accurately modeled by setting equivalent sources inside sound fibers, and the array scanning method applies. Modeling accuracy and efficiency of the approaches are illustrated by numerical simulations.
Publisher
Elsevier
Citation
Liu, Li, Zhong, Lesselier. Electromagnetic modeling of damaged fiber-reinforced laminates. Journal of Computational Physics. 2020;409
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (UB) [3245]
Copyright 2020 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)