ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of Machine Learning Methods for Predicting Quad-Polarimetric Parameters from Dual-Polarimetric SAR Data

Permanent lenke
https://hdl.handle.net/10037/21057
DOI
https://doi.org/10.1109/IGARSS39084.2020.9324192
Thumbnail
Åpne
article.pdf (5.599Mb)
Akseptert manusversjon (PDF)
Dato
2021-02-17
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Blix, Katalin; Espeseth, Martine; Eltoft, Torbjørn
Sammendrag
This paper addresses the problem of up-scaling full polarimetric (quad-pol) parameters from small quad-pol synthetic aperture radar (SAR) scenes to large dual-pol scenes, using a sophisticated Machine Learning (ML) method, namely the Gaussian Process Regression (GPR). The approach is to let the GPR model learn the relationships between the dual-pol input data and the quad-pol parameters on a quad-pol scene, and then extrapolate the relationships to the whole dual-pol scene. We demonstrate the procedure on two pairs of quadpol Radarsat-2 (RS2) and dual-pol ScanSAR Sentinel-1 (S1) scenes, acquired less than 20 minutes apart. The results are visualised as pixel-wise parametric maps, supported by three quantitative regression performance measures. In addition, we show certainty level maps for the estimated parameters. Our results indicate the potential of using the ML GPR model to upscale quad-pol scenes to large dual-pol images.
Beskrivelse
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Forlag
IEEE
Sitering
Blix K, Espeseth M, Eltoft T. Comparison of Machine Learning Methods for Predicting Quad-Polarimetric Parameters from Dual-Polarimetric SAR Data. IEEE International Geoscience and Remote Sensing Symposium proceedings. 2020
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]
Copyright 2021 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring