Advancing Quantitative PET Imaging with Machine Learning
Permanent lenke
https://hdl.handle.net/10037/21186Åpne
Dato
2021-05-28Type
Doctoral thesisDoktorgradsavhandling
Forfatter
Kuttner, SamuelSammendrag
Har del(er)
Paper I: Kuttner, S., Lassen, M.L., Øen, S.K., Sundset, R., Beyer, T. & Eikenes, L. (2020). Quantitative PET/MR imaging of lung cancer in the presence of artifacts in the MR-based attenuation correction maps. Acta Radiologica, 61(1), 11-20. Also available at https://doi.org/10.1177/0284185119848118. Accepted manuscript version available in Munin at https://hdl.handle.net/10037/17739.
Paper II: Kuttner, S., Paulsen, E.E., Jenssen, R., Sundset, R. & Axelsson, J. Motion-robust radiomic features for image classification in 18F-FDG PET/MRI imaging of lung cancer. (Manuscript).
Paper III: Kuttner, S., Wickstrøm, K.K., Kalda, G., Dorraji, S.E., Martin-Armas, M., Oteiza, A., … Axelsson, J. (2020). Machine learning derived input-function in a dynamic 18F-FDG PET study of mice. Biomedical Physics & Engineering Express, 6(1), 015020. Published version not available in Munin due to publisher’s restrictions. Published version available at https://doi.org/10.1088/2057-1976/ab6496. Accepted manuscript version available in Munin at https://hdl.handle.net/10037/20448.
Paper IV: Kuttner, S., Wickstrøm, K.K., Lubberink, M., Tolf, A., Burman, J., Sundset, R., … Axelsson, J. (2021). Cerebral blood flow measurements with 15O-water PET using a non-invasive machine-learning-derived arterial input function. Journal of Cerebral Blood Flow & Metabolism. Also available in Munin at https://hdl.handle.net/10037/21469.
Tilknyttede forskningsdata
Kuttner, S. (2021). Replication Data for: Motion robust radiomic features in 18F-FDG PET/MRI imaging of lung cancer. DataverseNO, V1, UNF:6:+a2bcUvGwsGCB+YdLJ4vnA== [fileUNF]. https://doi.org/10.18710/2JTIOT.Forlag
UiT The Arctic University of NorwayUiT Norges arktiske universitet
Metadata
Vis full innførselSamlinger
Følgende lisensfil er knyttet til denne innførselen: