Vis enkel innførsel

dc.contributor.authorSamko, Natasha
dc.date.accessioned2021-05-17T20:51:35Z
dc.date.available2021-05-17T20:51:35Z
dc.date.issued2020-11-13
dc.description.abstractWe show that integrability properties of integral transforms with kernel depending on the product of arguments (which include in particular, popular Laplace, Hankel, Mittag-Leffler transforms and various others) are better described in terms of Morrey spaces than in terms of Lebesgue spaces. Mapping properties of integral transforms of such a type in Lebesgue spaces, including weight setting, are known. We discover that local weighted Morrey and complementary Morrey spaces are very appropriate spaces for describing integrability properties of such transforms. More precisely, we show that under certain natural assumptions on the kernel, transforms under consideration act from local weighted Morrey space to a weighted complementary Morrey space and vice versa, where an interplay between behavior of functions and their transforms at the origin and infinity is transparent. In case of multidimensional integral transforms, for this goal we introduce and use anisotropic mixed norm Morrey and complementary Morrey spacesen_US
dc.identifier.citationSamko. Integrability properties of integral transforms via morrey spaces. Fractional Calculus and Applied Analysis. 2020;23(5):1274-1299en_US
dc.identifier.cristinIDFRIDAID 1853041
dc.identifier.doi10.1515/fca-2020-0064
dc.identifier.issn1311-0454
dc.identifier.issn1314-2224
dc.identifier.urihttps://hdl.handle.net/10037/21195
dc.language.isoengen_US
dc.publisherDe Gruyteren_US
dc.relation.journalFractional Calculus and Applied Analysis
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 The Author(s)en_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Algebra/algebraic analysis: 414en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Algebra/algebraisk analyse: 414en_US
dc.titleIntegrability properties of integral transforms via morrey spacesen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel