Show simple item record

dc.contributor.authorKruglikov, Boris
dc.contributor.authorMatveev, Vladimir S.
dc.date.accessioned2009-09-24T11:52:40Z
dc.date.available2009-09-24T11:52:40Z
dc.date.issued2004-10-24
dc.description.abstractIf a closed manifold M possesses two Riemannian metrics which have the same unparameterized geodesics and are not strictly proportional at each point, then the topological entropy of both geodesic flows is zero. This is the main result of the paper and it has many dynamical and topological corollaries. In particular, such a manifoldM should be finitely covered by the product of a rationally elliptic manifold and a torus.en
dc.descriptionDette er forfatternes aksepterte versjon. This is the author’s final accepted manuscript.en
dc.format.extent307073 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.citationErgod. Th. & Dynam. Sys. (2006), 26, 247–266 doi:10.1017/S0143385705000283en
dc.identifier.urihttps://hdl.handle.net/10037/2130
dc.identifier.urnURN:NBN:no-uit_munin_1881
dc.language.isoengen
dc.publisherCambridge University Pressen
dc.rights.accessRightsopenAccess
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Topology/geometry: 415en
dc.titleStrictly non-proportional geodesically equivalent metrics have htop(g) = 0en
dc.typeJournal articleen
dc.typeTidsskriftartikkelen
dc.typePeer revieweden


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record