Strictly non-proportional geodesically equivalent metrics have htop(g) = 0
Permanent lenke
https://hdl.handle.net/10037/2130Dato
2004-10-24Type
Journal articleTidsskriftartikkel
Peer reviewed
Sammendrag
If a closed manifold M possesses two Riemannian metrics which have the
same unparameterized geodesics and are not strictly proportional at each point, then the
topological entropy of both geodesic flows is zero. This is the main result of the paper and
it has many dynamical and topological corollaries. In particular, such a manifoldM should
be finitely covered by the product of a rationally elliptic manifold and a torus.
Beskrivelse
Dette er forfatternes aksepterte versjon.
This is the author’s final accepted manuscript.
Forlag
Cambridge University PressSitering
Ergod. Th. & Dynam. Sys. (2006), 26, 247–266 doi:10.1017/S0143385705000283Metadata
Vis full innførselSamlinger
Følgende lisensfil er knyttet til denne innførselen: