dc.contributor.author | Kruglikov, Boris | |
dc.contributor.author | Matveev, Vladimir S. | |
dc.date.accessioned | 2009-09-24T11:52:40Z | |
dc.date.available | 2009-09-24T11:52:40Z | |
dc.date.issued | 2004-10-24 | |
dc.description.abstract | If a closed manifold M possesses two Riemannian metrics which have the
same unparameterized geodesics and are not strictly proportional at each point, then the
topological entropy of both geodesic flows is zero. This is the main result of the paper and
it has many dynamical and topological corollaries. In particular, such a manifoldM should
be finitely covered by the product of a rationally elliptic manifold and a torus. | en |
dc.description | Dette er forfatternes aksepterte versjon.
This is the author’s final accepted manuscript. | en |
dc.format.extent | 307073 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Ergod. Th. & Dynam. Sys. (2006), 26, 247–266 doi:10.1017/S0143385705000283 | en |
dc.identifier.uri | https://hdl.handle.net/10037/2130 | |
dc.identifier.urn | URN:NBN:no-uit_munin_1881 | |
dc.language.iso | eng | en |
dc.publisher | Cambridge University Press | en |
dc.rights.accessRights | openAccess | |
dc.subject | VDP::Mathematics and natural science: 400::Mathematics: 410::Topology/geometry: 415 | en |
dc.title | Strictly non-proportional geodesically equivalent
metrics have htop(g) = 0 | en |
dc.type | Journal article | en |
dc.type | Tidsskriftartikkel | en |
dc.type | Peer reviewed | en |