ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Site-specific responses of fungal and bacterial abundances to experimental warming in litter and soil across arctic and alpine tundra

Permanent link
https://hdl.handle.net/10037/21476
DOI
https://doi.org/10.1139/AS-2020-0053
Thumbnail
View/Open
article.pdf (566.5Kb)
Accepted manuscript version (PDF)
Date
2021-04-01
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Jeanbille, Mathilde; Clemmensen, Karina E; Juhanson, Jaanis; Michelsen, Anders; Cooper, Elisabeth J.; Henry, Greg H.R.; Hofgaard, Annika; Hollister, Robert D.; Jónsdóttir, Ingibjörg Svala; Klanderud, Kari; Tolvanen, Anne; Hallin, Sara
Abstract
Vegetation change of the Arctic tundra due to global warming is a well-known process, but the implication for the belowground microbial communities, key in nutrient cycling and decomposition, is poorly understood. We characterized the fungal and bacterial abundances in litter and soil layers across 16 warming experimental sites at 12 circumpolar locations. We investigated the relationship between microbial abundances and nitrogen (N) and carbon (C) isotopic signatures, indicating shifts in microbial processes with warming. Microbial abundances were 2-3 orders of magnitudes larger in litter than in soil. Local, site-dependent responses of microbial abundances were variable, and no general effect of warming was detected. The only generalizable trend across sites was a dependence between the warming response-ratios and C:N ratio in controls, highlighting a legacy of the vegetation on the microbial response to warming. We detected a positive effect of warming on the litter mass and δ15N, which was linked to bacterial abundance under warmed conditions. This effect was stronger in experimental sites dominated by deciduous shrubs, suggesting an altered bacterial N-cycling with increased temperatures, mediated by the vegetation, and with possible consequences on ecosystem feedbacks to climate change.
Publisher
Canadian Science Publishing
Citation
Jeanbille, Clemmensen KE, Juhanson, Michelsen A, Cooper E.J., Henry GH, Hofgaard A, Hollister RD, Jónsdóttir IS, Klanderud K, Tolvanen A, Hallin S. Site-specific responses of fungal and bacterial abundances to experimental warming in litter and soil across arctic and alpine tundra. Arctic Science. 2021
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (arktisk og marin biologi) [1636]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)