Vis enkel innførsel

dc.contributor.authorAvershina, Ekaterina
dc.contributor.authorSharma, Priyanka
dc.contributor.authorTaxt, Arne Michael
dc.contributor.authorSingh, Harpreet
dc.contributor.authorFrye, Stephan Alfons
dc.contributor.authorPaul, Kolin
dc.contributor.authorKapil, Arti
dc.contributor.authorNaseer, Mohammed Umaer
dc.contributor.authorKaur, Punit
dc.contributor.authorAhmad, Rafi
dc.date.accessioned2021-06-29T11:47:36Z
dc.date.available2021-06-29T11:47:36Z
dc.date.issued2021-03-29
dc.description.abstractAntibiotic resistance poses a major threat to public health. More effective ways of the antibiotic prescription are needed to delay the spread of antibiotic resistance. Employment of sequencing technologies coupled with the use of trained neural network algorithms for genotype-to-phenotype prediction will reduce the time needed for antibiotic susceptibility profile identification from days to hours.<p> <p>In this work, we have sequenced and phenotypically characterized 171 clinical isolates of Escherichia coli and Klebsiella pneumoniae from Norway and India. Based on the data, we have created neural networks to predict susceptibility for ampicillin, 3rd generation cephalosporins and carbapenems. All networks were trained on unassembled data, enabling prediction within minutes after the sequencing information becomes available. Moreover, they can be used both on Illumina and MinION generated data and do not require high genome coverage for phenotype prediction. We cross-checked our networks with previously published algorithms for genotype-to-phenotype prediction and their corresponding datasets. Besides, we also created an ensemble of networks trained on different datasets, which improved the cross-dataset prediction compared to a single network.<p> <p>Additionally, we have used data from direct sequencing of spiked blood cultures and found that AMR-Diag networks, coupled with MinION sequencing, can predict bacterial species, resistome, and phenotype as fast as 1–8 h from the sequencing start. To our knowledge, this is the first study for genotype-to-phenotype prediction: (1) employing a neural network method; (2) using data from more than one sequencing platform; and (3) utilizing sequence data from spiked blood cultures.en_US
dc.identifier.citationAvershina, Sharma, Taxt, Singh, Frye, Paul, Kapil, Naseer, Kaur, Ahmad. AMR-Diag: Neural network based genotype-to-phenotype prediction of resistance towards β-lactams in Escherichia coli and Klebsiella pneumoniae. Computational and Structural Biotechnology Journal. 2021;19:1896-1906en_US
dc.identifier.cristinIDFRIDAID 1905827
dc.identifier.doi10.1016/j.csbj.2021.03.027
dc.identifier.issn2001-0370
dc.identifier.urihttps://hdl.handle.net/10037/21609
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalComputational and Structural Biotechnology Journal
dc.relation.projectIDNorges forskningsråd: 273609en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/BEDREHELSE/273609/Norway/AMR-Diag: A Novel Diagnostic Tool for Sequence Based Prediction of Antimicrobial Resistance//en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
dc.subjectVDP::Matematikk og naturvitenskap: 400::Basale biofag: 470::Bioinformatikk: 475en_US
dc.subjectVDP::Mathematics and natural scienses: 400::Basic biosciences: 470::Bioinformatics: 475en_US
dc.subjectVDP::Matematikk og naturvitenskap: 400::Basale biofag: 470::Genetikk og genomikk: 474en_US
dc.subjectVDP::Mathematics and natural scienses: 400::Basic biosciences: 470::Genetics and genomics: 474en_US
dc.subjectVDP::Medisinske fag: 700::Basale medisinske, odontologiske og veterinærmedisinske fag: 710::Medisinsk mikrobiologi : 715en_US
dc.subjectVDP::Midical sciences: 700::Basic medical, dental and veterinary sciences: 710::Medical microbiology: 715en_US
dc.subjectArtificial Neural Networks / Artificial Neural Networksen_US
dc.subjectMaskinlæring / Machine learningen_US
dc.titleAMR-Diag: Neural network based genotype-to-phenotype prediction of resistance towards β-lactams in Escherichia coli and Klebsiella pneumoniaeen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel