dc.contributor.author | Garcia-Erill, Genís | |
dc.contributor.author | Kjær, Michael Munkholm | |
dc.contributor.author | Albrechtsen, Anders | |
dc.contributor.author | Siegismund, Hans Redlef | |
dc.contributor.author | Heller, Rasmus | |
dc.date.accessioned | 2021-07-07T10:37:23Z | |
dc.date.available | 2021-07-07T10:37:23Z | |
dc.date.issued | 2020-11-23 | |
dc.description.abstract | Grant's gazelles have recently been proposed to be a species complex comprising three highly divergent mtDNA lineages (<i>Nanger granti, N. notata</i> and <i>N. petersii</i>). The three lineages have nonoverlapping distributions in East Africa, but without any obvious geographical divisions, making them an interesting model for studying the early-stage evolutionary dynamics of allopatric speciation in detail. Here, we use genomic data obtained by restriction site-associated (RAD) sequencing of 106 gazelle individuals to shed light on the evolutionary processes underlying Grant's gazelle divergence, to characterize their genetic structure and to assess the presence of gene flow between the main lineages in the species complex. We date the species divergence to 134,000 years ago, which is recent in evolutionary terms. We find population subdivision within <i>N. granti</i>, which coincides with the previously suggested two subspecies, <i>N. g. granti</i> and <i>N. g. robertsii</i>. Moreover, these two lineages seem to have hybridized in Masai Mara. Perhaps more surprisingly given their extreme genetic differentiation, <i>N. granti</i> and <i>N. petersii</i> also show signs of prolonged admixture in Mkomazi, which we identified as a hybrid population most likely founded by allopatric lineages coming into secondary contact. Despite the admixed composition of this population, elevated X chromosomal differentiation suggests that selection may be shaping the outcome of hybridization in this population. Our results therefore provide detailed insights into the processes of allopatric speciation and secondary contact in a recently radiated species complex. | en_US |
dc.identifier.citation | Garcia-Erill, Kjær, Albrechtsen, Siegismund, Heller. Vicariance followed by secondary gene flow in a young gazelle species complex. Molecular Ecology. 2021;30(2):528-544 | en_US |
dc.identifier.cristinID | FRIDAID 1909150 | |
dc.identifier.doi | 10.1111/mec.15738 | |
dc.identifier.issn | 0962-1083 | |
dc.identifier.issn | 1365-294X | |
dc.identifier.uri | https://hdl.handle.net/10037/21804 | |
dc.language.iso | eng | en_US |
dc.publisher | Wiley | en_US |
dc.relation.journal | Molecular Ecology | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2021 The Author(s) | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Zoology and botany: 480::Systematic zoology: 487 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Systematisk zoologi: 487 | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Basic biosciences: 470::Genetics and genomics: 474 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Basale biofag: 470::Genetikk og genomikk: 474 | en_US |
dc.title | Vicariance followed by secondary gene flow in a young gazelle species complex | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |