ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting Energy Demand in Semi-Remote Arctic Locations

Permanent lenke
https://hdl.handle.net/10037/21823
DOI
https://doi.org/10.3390/en14040798
Thumbnail
Åpne
article.pdf (3.001Mb)
Publisert versjon (PDF)
Dato
2021-02-03
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Foldvik Eikeland, Odin; Bianchi, Filippo Maria; Chiesa, Matteo; Apostoleris, Harry; Hansen, Morten; Chiou, Yu-Cheng
Sammendrag
Forecasting energy demand within a distribution network is essential for developing strategies to manage and optimize available energy resources and the associated infrastructure. In this study, we consider remote communities in the Arctic located at the end of the radial distribution network without alternative energy supply. Therefore, it is crucial to develop an accurate forecasting model to manage and optimize the limited energy resources available. We first compare the accuracy of several models that perform short-and medium-term load forecasts in rural areas, where a single industrial customer dominates the electricity consumption. We consider both statistical methods and machine learning models to predict energy demand. Then, we evaluate the transferability of each method to a geographical rural area different from the one considered for training. Our results indicate that statistical models achieve higher accuracy on longer forecast horizons relative to neural networks, while the machine-learning approaches perform better in predicting load at shorter time intervals. The machine learning models also exhibit good transferability, as they manage to predict well the load at new locations that were not accounted for during training. Our work will serve as a guide for selecting the appropriate prediction model and apply it to perform energy load forecasting in rural areas and in locations where historical consumption data may be limited or even not available.
Er en del av
Eikeland, O.F. (2023). Enhancing Decision-making in the Electric Power Sector with Machine Learning and Optimization. (Doctoral thesis). https://hdl.handle.net/10037/31514.
Forlag
MDPI
Sitering
Foldvik Eikeland OF, Bianchi FM, Chiesa M, Apostoleris H, Hansen M, Chiou Y. Predicting Energy Demand in Semi-Remote Arctic Locations. Energies. 2021;798
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2021 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring