ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting Energy Demand in Semi-Remote Arctic Locations

Permanent link
https://hdl.handle.net/10037/21823
DOI
https://doi.org/10.3390/en14040798
Thumbnail
View/Open
article.pdf (3.001Mb)
Published version (PDF)
Date
2021-02-03
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Foldvik Eikeland, Odin; Bianchi, Filippo Maria; Chiesa, Matteo; Apostoleris, Harry; Hansen, Morten; Chiou, Yu-Cheng
Abstract
Forecasting energy demand within a distribution network is essential for developing strategies to manage and optimize available energy resources and the associated infrastructure. In this study, we consider remote communities in the Arctic located at the end of the radial distribution network without alternative energy supply. Therefore, it is crucial to develop an accurate forecasting model to manage and optimize the limited energy resources available. We first compare the accuracy of several models that perform short-and medium-term load forecasts in rural areas, where a single industrial customer dominates the electricity consumption. We consider both statistical methods and machine learning models to predict energy demand. Then, we evaluate the transferability of each method to a geographical rural area different from the one considered for training. Our results indicate that statistical models achieve higher accuracy on longer forecast horizons relative to neural networks, while the machine-learning approaches perform better in predicting load at shorter time intervals. The machine learning models also exhibit good transferability, as they manage to predict well the load at new locations that were not accounted for during training. Our work will serve as a guide for selecting the appropriate prediction model and apply it to perform energy load forecasting in rural areas and in locations where historical consumption data may be limited or even not available.
Is part of
Eikeland, O.F. (2023). Enhancing Decision-making in the Electric Power Sector with Machine Learning and Optimization. (Doctoral thesis). https://hdl.handle.net/10037/31514.
Publisher
MDPI
Citation
Foldvik Eikeland OF, Bianchi FM, Chiesa M, Apostoleris H, Hansen M, Chiou Y. Predicting Energy Demand in Semi-Remote Arctic Locations. Energies. 2021;798
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)