ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

IRON-MAN: An Approach to Perform Temporal Motionless Analysis of Video Using CNN in MPSoC

Permanent link
https://hdl.handle.net/10037/22928
DOI
https://doi.org/10.1109/ACCESS.2020.3010185
Thumbnail
View/Open
article.pdf (2.807Mb)
Published version (PDF)
Date
2020-07-20
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Dey, Somdip; Singh, Amit Kumar; Prasad, Dilip K.; McDonald-Maier, Klaus Dieter
Abstract
This paper proposes a novel human-inspired methodology called IRON-MAN (Integrated RatiONal prediction and Motionless ANalysis) for mobile multi-processor systems-on-chips (MPSoCs). The methodology integrates analysis of the previous image frames of the video to represent the analysis of the current frame in order to perform Temporal Motionless Analysis of the Video (TMAV). This is the first work on TMAV using Convolutional Neural Network (CNN) for scene prediction in MPSoCs. Experimental results show that our methodology outperforms state-of-the-art. We also introduce a metric named, Energy Consumption per Training Image (ECTI) to assess the suitability of using a CNN model in mobile MPSoCs with a focus on energy consumption and lifespan reliability of the device.
Publisher
IEEE
Citation
Dey, Singh, Prasad, McDonald-Maier. IRON-MAN: An Approach to Perform Temporal Motionless Analysis of Video Using CNN in MPSoC. IEEE Access. 2020;8:137101-137115
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (informatikk) [477]
Copyright 2020 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)