ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • Vis innførsel
  •   Hjem
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quorum sensing in Aliivibrio wodanis 06/09/139 and its role in controlling various phenotypic traits

Permanent lenke
https://hdl.handle.net/10037/23167
DOI
https://doi.org/10.7717/peerj.11980
Thumbnail
Åpne
article.pdf (8.544Mb)
Publisert versjon (PDF)
Dato
2021-08-24
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Maharajan, Amudha Deepalakshmi; Hansen, Hilde; Khider, Miriam; Willassen, Nils P
Sammendrag
Background Quorum Sensing (QS) is a cell-to-cell communication system that bacteria utilize to adapt to the external environment by synthesizing and responding to signalling molecules called autoinducers. The psychrotrophic bacterium Aliivibrio wodanis 06/09/139, originally isolated from a winter ulcer of a reared Atlantic salmon, produces the autoinducer N-3-hydroxy-decanoyl-homoserine-lactone (3OHC10-HSL) and encodes the QS systems AinS/R and LuxS/PQ, and the master regulator LitR. However, the role of QS in this bacterium has not been investigated yet. Results In the present work we show that 3OHC10-HSL production is cell density and temperature-dependent in A. wodanis 06/09/139 with the highest production occurring at a low temperature (6 °C). Gene inactivation demonstrates that AinS is responsible for 3OHC10-HSL production and positively regulated by LitR. Inactivation of ainS and litR further show that QS is involved in the regulation of growth, motility, hemolysis, protease activity and siderophore production. Of these QS regulated activities, only the protease activity was found to be independent of LitR. Lastly, supernatants harvested from the wild type and the ΔainS and ΔlitR mutants at high cell densities show that inactivation of QS leads to a decreased cytopathogenic effect (CPE) in a cell culture assay, and strongest attenuation of the CPE was observed with supernatants harvested from the ΔlitR mutant. Conclusion A. wodanis 06/09/139 use QS to regulate a number of activities that may prove important for host colonization or interactions. The temperature of 6 °C that is in the temperature range at which winter ulcer occurs, plays a role in AHL production and development of CPE on a Chinook Salmon Embryo (CHSE) cell line.
Er en del av
Maharajan, A.D. (2023). AHL-mediated quorum sensing regulation: Role in controlling cytotoxicity, T6SSs and CRISPR-Cas systems in Aliivibrio wodanis. (Doctoral thesis). https://hdl.handle.net/10037/28075
Forlag
PeerJ
Sitering
Maharajan, Hansen, Khider, Willassen. Quorum sensing in Aliivibrio wodanis 06/09/139 and its role in controlling various phenotypic traits. PeerJ. 2021
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (UB) [3245]
Copyright 2021 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring