ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

causalizeR: a text mining algorithm to identify causal relationships in scientific literature

Permanent link
https://hdl.handle.net/10037/23168
DOI
https://doi.org/10.7717/peerj.11850
Thumbnail
View/Open
article.pdf (572.4Kb)
Published version (PDF)
Date
2021-07-20
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Ancin Murguzur, Francisco Javier; Hausner, Vera Helene
Abstract
Complex interactions among multiple abiotic and biotic drivers result in rapid changes in ecosystems worldwide. Predicting how specific interactions can cause ripple effects potentially resulting in abrupt shifts in ecosystems is of high relevance to policymakers, but difficult to quantify using data from singular cases. We present causalizeR (https://github.com/fjmurguzur/causalizeR), a text-processing algorithm that extracts causal relations from literature based on simple grammatical rules that can be used to synthesize evidence in unstructured texts in a structured manner. The algorithm extracts causal links using the relative position of nouns relative to the keyword of choice to extract the cause and effects of interest. The resulting database can be combined with network analysis tools to estimate the direct and indirect effects of multiple drivers at the network level, which is useful for synthesizing available knowledge and for hypothesis creation and testing. We illustrate the use of the algorithm by detecting causal relationships in scientific literature relating to the tundra ecosystem.
Publisher
PeerJ
Citation
Ancin Murguzur, Hausner. causalizeR: a text mining algorithm to identify causal relationships in scientific literature. PeerJ. 2021
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (arktisk og marin biologi) [1636]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)