Data-augmented sequential deep learning for wind power forecasting
Permanent lenke
https://hdl.handle.net/10037/23515Dato
2021-11-15Type
Journal articleTidsskriftartikkel
Peer reviewed
Sammendrag
Accurate wind power forecasting plays a critical role in the operation of wind parks and the dispatch of wind energy into the power grid. With excellent automatic pattern recognition and nonlinear mapping ability for big data, deep learning is increasingly employed in wind power forecasting. However, salient realities are that in-situ measured wind data are relatively expensive and inaccessible and correlation between steps is omitted in most multistep wind power forecasts. This paper is the first time that data augmentation is applied to wind power forecasting by systematically summarizing and proposing both physics-oriented and data-oriented time-series wind data augmentation approaches to considerably enlarge primary datasets, and develops deep encoder-decoder long short-term memory networks that enable sequential input and sequential output for wind power forecasting. The proposed augmentation techniques and forecasting algorithm are deployed on five turbines with diverse topographies in an Arctic wind park, and the outcomes are evaluated against benchmark models and different augmentations. The main findings reveal that on one side, the average improvement in RMSE of the proposed forecasting model over the benchmarks is 33.89%, 10.60%, 7.12%, and 4.27% before data augmentations, and increases to 40.63%, 17.67%, 11.74%, and 7.06%, respectively, after augmentations. The other side unveils that the effect of data augmentations on prediction is intricately varying, but for the proposed model with and without augmentations, all augmentation approaches boost the model outperformance from 7.87% to 13.36% in RMSE, 5.24% to 8.97% in MAE, and similarly over 12% in QR90. Finally, data-oriented augmentations, in general, are slightly better than physics-driven ones.
Er en del av
Chen, H. (2022). Data-driven Arctic wind energy analysis by statistical and machine learning approaches. (Doctoral thesis). https://hdl.handle.net/10037/26938Forlag
ElsevierSitering
Chen, Birkelund. Data-augmented sequential deep learning for wind power forecasting. Energy Conversion and Management. 2021Metadata
Vis full innførselSamlinger
Copyright 2021 The Author(s)