Vis enkel innførsel

dc.contributor.authorChen, Hao
dc.contributor.authorBirkelund, Yngve
dc.contributor.authorQixia, Zhang
dc.date.accessioned2021-12-27T13:58:36Z
dc.date.available2021-12-27T13:58:36Z
dc.date.issued2021-11-15
dc.description.abstractAccurate wind power forecasting plays a critical role in the operation of wind parks and the dispatch of wind energy into the power grid. With excellent automatic pattern recognition and nonlinear mapping ability for big data, deep learning is increasingly employed in wind power forecasting. However, salient realities are that in-situ measured wind data are relatively expensive and inaccessible and correlation between steps is omitted in most multistep wind power forecasts. This paper is the first time that data augmentation is applied to wind power forecasting by systematically summarizing and proposing both physics-oriented and data-oriented time-series wind data augmentation approaches to considerably enlarge primary datasets, and develops deep encoder-decoder long short-term memory networks that enable sequential input and sequential output for wind power forecasting. The proposed augmentation techniques and forecasting algorithm are deployed on five turbines with diverse topographies in an Arctic wind park, and the outcomes are evaluated against benchmark models and different augmentations. The main findings reveal that on one side, the average improvement in RMSE of the proposed forecasting model over the benchmarks is 33.89%, 10.60%, 7.12%, and 4.27% before data augmentations, and increases to 40.63%, 17.67%, 11.74%, and 7.06%, respectively, after augmentations. The other side unveils that the effect of data augmentations on prediction is intricately varying, but for the proposed model with and without augmentations, all augmentation approaches boost the model outperformance from 7.87% to 13.36% in RMSE, 5.24% to 8.97% in MAE, and similarly over 12% in QR90. Finally, data-oriented augmentations, in general, are slightly better than physics-driven ones.en_US
dc.identifier.citationChen, Birkelund. Data-augmented sequential deep learning for wind power forecasting. Energy Conversion and Management. 2021en_US
dc.identifier.cristinIDFRIDAID 1942745
dc.identifier.doi10.1016/j.enconman.2021.114790
dc.identifier.issn0196-8904
dc.identifier.issn1879-2227
dc.identifier.urihttps://hdl.handle.net/10037/23515
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofChen, H. (2022). Data-driven Arctic wind energy analysis by statistical and machine learning approaches. (Doctoral thesis). <a href=https://hdl.handle.net/10037/26938>https://hdl.handle.net/10037/26938</a>
dc.relation.journalEnergy Conversion and Management
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
dc.subjectVDP::Mathematics and natural science: 400::Physics: 430en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430en_US
dc.subjectVDP::Technology: 500en_US
dc.subjectVDP::Teknologi: 500en_US
dc.titleData-augmented sequential deep learning for wind power forecastingen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel