ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Second-Order PDEs in 3D with Einstein–Weyl Conformal Structure

Permanent link
https://hdl.handle.net/10037/23750
DOI
https://doi.org/10.1007/s00023-021-01140-2
Thumbnail
View/Open
article.pdf (564.9Kb)
Published version (PDF)
Date
2021-12-07
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Berjawi, S.; Ferapontov, E.V.; Kruglikov, Boris; Novikov, V.S.
Abstract
Einstein–Weyl geometry is a triple (D,g,ω) where D is a symmetric connection, [g] is a conformal structure and ω is a covector such that ∙ connection D preserves the conformal class [g], that is, Dg=ωg; ∙ trace-free part of the symmetrised Ricci tensor of D vanishes. Three-dimensional Einstein–Weyl structures naturally arise on solutions of second-order dispersionless integrable PDEs in 3D. In this context, [g] coincides with the characteristic conformal structure and is therefore uniquely determined by the equation. On the contrary, covector ω is a somewhat more mysterious object, recovered from the Einstein–Weyl conditions. We demonstrate that, for generic second-order PDEs (for instance, for all equations not of Monge–Ampère type), the covector ω is also expressible in terms of the equation, thus providing an efficient ‘dispersionless integrability test’. The knowledge of g and ω provides a dispersionless Lax pair by an explicit formula which is apparently new. Some partial classification results of PDEs with Einstein–Weyl characteristic conformal structure are obtained. A rigidity conjecture is proposed according to which for any generic second-order PDE with Einstein–Weyl property, all dependence on the 1-jet variables can be eliminated via a suitable contact transformation.
Publisher
Springer
Citation
Berjawi, Ferapontov, Kruglikov BS, Novikov. Second-Order PDEs in 3D with Einstein–Weyl Conformal Structure. Annales de l'Institute Henri Poincare. Physique theorique. 2021:1-31
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (matematikk og statistikk) [356]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)