ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sol-Gel Thin Film Processing for Integrated Waveguide Sensors

Permanent link
https://hdl.handle.net/10037/23795
DOI
https://doi.org/10.3389/fmats.2021.629822
Thumbnail
View/Open
article.pdf (2.386Mb)
Published version (PDF)
Date
2021-03-05
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Alberti, Sebastian; Jagerska, Jana
Abstract
Integrated opto-chemical sensors present great advantages in comparison to the current lab equipment. They bring portability, reduced costs, facilitate in-situ measurements, as well as largely reduced sample volumes. In this quest, standard processing protocols over established materials, such as silicon nitride, silicon, silicon dioxide, titanium oxide, and even a wide variety of polymers have so far been the key toward on-chip devices. However, if very specific materials in terms of composition and tailored properties are required, the deposition via a solution represents a viable alternative. In this review, we highlight the role of sol-gel chemistry and top-down processing of sol-gel thin film layers in the design of waveguide-based optical sensors. In particular, we stress the advantages of porous sol-gel based materials as a new approach to increase sensitivity and selectivity, first when used as claddings, and, more recently, as waveguides with enhanced light–analyte interaction. We finally discuss the future perspectives of such devices to increase specificity in complex matrices, which is of utmost importance for bio-sensing.
Publisher
Frontiers Media
Citation
Alberti, Jagerska. Sol-Gel Thin Film Processing for Integrated Waveguide Sensors. Frontiers in Materials. 2021
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)