ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Long-distance particle transport to the central Ionian Sea

Permanent link
https://hdl.handle.net/10037/23999
DOI
https://doi.org/10.5194/bg-18-6377-2021
Thumbnail
View/Open
article.pdf (3.783Mb)
Published version (PDF)
Date
2021-12-14
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Berline, Léo; Doglioli, Andrea Michelangelo; Petrenko, Anne; Barrillon, Stéphanie; Espinasse, Boris Dristan; Le Moigne, Frederic A. C.; Simon-Bot, François; Thyssen, Melilotus; Carlotti, F.
Abstract
Together with T –S properties, particle abundance in situ measurements are useful to discriminate water masses and derive circulation patterns. In the upper layers of the Ionian Sea, the fresher Atlantic Waters (AW) recently crossing the Sicily Channel meet the resident and saltier AW, which circulated cyclonically in the eastern basin and modified after evaporation and eventually cooling. In May 2017, during the PEACETIME cruise, fluorescence and particle abundance sampled at high resolution revealed unexpected heterogeneity in the central Ionian Sea. Surface salinity measurements, together with altimetry-derived and hull-mounted acoustic Doppler current profiler (ADCP) currents, describe a zonal pathway of AW entering the Ionian Sea, consistent with the so-called cyclonic mode in the North Ionian Gyre. The ION-Tr transect, located between 19–20◦ E at approximately 36◦ N, turned out to be at the crossroads of three water masses, mostly coming from the west, north and an isolated anticyclonic eddy northeast of ION-Tr. Using Lagrangian numerical simulations, we suggest that the contrast in particle loads along ION-Tr originates from particles transported from these three different water masses. Waters from the west, identified as AW carried by a strong southwestward jet, were moderate in particle load, probably originating from the Sicily Channel. The water mass from the north, carrying abundant particles, probably originated in the northern Ionian Sea, or further away from the south Adriatic Sea. Waters from the eddy, depleted in particles and chl a, may originate from south of the Peloponnese, where the Pelops eddy forms. The central Ionian Sea hence appears as a mosaic area, where waters of contrasted biological history meet. This contrast is particularly clear in spring, when blooming and nonblooming areas co-occur. Interpreting the complex dynamics of physical–biogeochemical coupling from discrete measurements made at isolated stations at sea is a challenge. The combination of multiparametric in situ measurements at high resolution with remote sensing and Lagrangian modeling appears as one adequate way to address this challenge.
Publisher
Copernicus Publications
Citation
Berline, Doglioli, Petrenko, Barrillon, Espinasse, Le Moigne, Simon-Bot, Thyssen, Carlotti. Long-distance particle transport to the central Ionian Sea. Biogeosciences. 2021;18(24):6377-6392
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (arktisk og marin biologi) [1637]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)