Vis enkel innførsel

dc.contributor.authorChen, Hao
dc.contributor.authorBirkelund, Yngve
dc.contributor.authorAnfinsen, Stian Normann
dc.contributor.authorYuan, Fuqing
dc.date.accessioned2022-03-24T09:42:19Z
dc.date.available2022-03-24T09:42:19Z
dc.date.issued2021-04-26
dc.description.abstractThis paper conducts a systemic comparative study on univariate and multivariate wind power forecasting for five wind farms inside the Arctic area. The development of wind power in the Arctic can help reduce greenhouse gas emissions in this environmentally fragile region. In practice, wind power forecasting is essential to maintain the grid balance and optimize electricity generation. This study first applies various learning methods for wind power forecasting. It comprehensively compares the performance of models categorized by whether considering weather factors in the Arctic. Nine different representative types of machine-learning algorithms make several univariate time series forecasting, and their performance is evaluated. It is demonstrated that machine-learning approaches have an insignificant advantage over the persistence method in the univariate situation. With numerical weather prediction wind data and wind power data as inputs, the multivariate forecasting models are established and made one to six h in advance predictions. The multivariate models, especially with the advanced learning algorithms, show their edge over the univariate model based on the same algorithm. Although weather data are mesoscale, they can contribute to improving the wind power forecasting accuracy. Moreover, these results are generally valid for the five wind farms, proving the models' effectiveness and universality in this regional wind power utilization. Additionally, there is no clear evidence that predictive model performance is related to wind farms' topographic complexity.en_US
dc.identifier.citationChen, Birkelund, Anfinsen, Yuan. Comparative study of data-driven short-term wind power forecasting approaches for the Norwegian Arctic region. Journal of Renewable and Sustainable Energy. 2021;13(2)en_US
dc.identifier.cristinIDFRIDAID 1907561
dc.identifier.doi10.1063/5.0038429
dc.identifier.issn1941-7012
dc.identifier.urihttps://hdl.handle.net/10037/24533
dc.language.isoengen_US
dc.publisherAmerican Institute of Physicsen_US
dc.relation.ispartofChen, H. (2022). Data-driven Arctic wind energy analysis by statistical and machine learning approaches. (Doctoral thesis). <a href=https://hdl.handle.net/10037/26938>https://hdl.handle.net/10037/26938</a>
dc.relation.journalJournal of Renewable and Sustainable Energy
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
dc.titleComparative study of data-driven short-term wind power forecasting approaches for the Norwegian Arctic regionen_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel