ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Label-free non-invasive classification of rice seeds using optical coherence tomography assisted with deep neural network

Permanent lenke
https://hdl.handle.net/10037/24535
DOI
https://doi.org/10.1016/j.optlastec.2020.106861
Thumbnail
Åpne
article.pdf (776.0Kb)
Akseptert manusversjon licensed CC BY-NC-ND. (PDF)
Dato
2021-01-01
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Joshi, Deepa; Butola, Ankit; Kanade, Sheetal Raosaheb; Prasad, Dilip K.; Amitha Mithra, Mithra; Singh, N.K.; Bisht, Deepak Singh; Mehta, Dalip Singh
Sammendrag
Identification of the seed varieties is essential in the quality control and high yield crop growth. The existing methods of varietal identification rely primarily on visual examination and DNA fingerprinting. Although the pattern of DNA fingerprinting allows precise classification of seed varieties but fraught with challenges such as low rate of polymorphism amongst closely related species, destructive method of analysis and a huge cost involved in identification of robust markers such as simple sequence repeat (SSR) and single nucleotide polymorphisms. Here, we propose a fast, non-contact and non-invasive technique, deep learning assisted optical coherence tomography (OCT) for subsurface imaging in order to distinguish different seed varieties. The volumetric dataset of, (a) four rice varieties (PUSA Basmati 1, PUSA 1509, PUSA 44 and IR 64) and, (b) seven morphologically similar seeds of rice landrace Pokkali was acquired using OCT technique. A feedforward deep neural network is implemented for deep feature extraction and to classify the OCT images into their relevant classes. The proposed method provides the classification accuracy of 89.6% for the dataset of total 158,421 OCT images and 82.5% in classifying the dataset of total 56,301 OCT images collected from Pokkali seeds. The current technique can accurately classify seed varieties irrespective of the morphological similarities and can be adopted for the removal of varietal duplication and assessment of the purity of the seeds.
Forlag
Elsevier
Sitering
Joshi, Butola, Kanade, Prasad, Amitha Mithra, Singh, Bisht, Mehta. Label-free non-invasive classification of rice seeds using optical coherence tomography assisted with deep neural network. Optics and Laser Technology. 2021;137:1-7
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (informatikk) [481]
Copyright 2021 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring