ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for datateknologi og beregningsorienterte ingeniørfag
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag)
  • View Item
  •   Home
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for datateknologi og beregningsorienterte ingeniørfag
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Weighted fractional Hardy operators and their commutators on generalized Morrey spaces over quasi-metric measure spaces

Permanent link
https://hdl.handle.net/10037/24661
DOI
https://doi.org/10.1515/fca-2021-0071
Thumbnail
View/Open
article.pdf (359.2Kb)
Published version (PDF)
Date
2021-11-22
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Samko, Natasha Gabatsuyevna
Abstract
We study commutators of weighted fractional Hardy-type operators within the frameworks of local generalized Morrey spaces over quasi-metric measure spaces for a certain class of “radial” weights. Quasi-metric measure spaces may include, in particular, sets of fractional dimentsions. We prove theorems on the boundedness of commutators with CMO coefficients of these operators. Given a domain Morrey space Lp,ϕ(X) for the fractional Hardy operators or their commutators, we pay a special attention to the study of the range of the exponent q of the target space Lq,ψ(X). In particular, in the case of classical Morrey spaces, we provide the upper bound of this range which is greater than the known Adams exponent. MSC 2010: Primary 46E30; Secondary 42B35, 42B25, 47B38 Key Words and Phrases: Morrey space; weighted fractional Hardy operators; commutators; BMO; CMO; quasi-metric measure spaces; growth condition; homogeneous spaces; quasi-monotone weights
Publisher
de Gruyter
Citation
Samko. Weighted fractional Hardy operators and their commutators on generalized Morrey spaces over quasi-metric measure spaces. Fractional Calculus and Applied Analysis. 2021;24(6):1643-1669
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag) [171]
Copyright 2021 Diogenes Co., Sofia

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)