ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Decomposing the Prediction Problem; Autonomous Navigation by neoRL Agents

Permanent link
https://hdl.handle.net/10037/24721
DOI
https://doi.org/10.1162/isal_a_00444
Thumbnail
View/Open
article.pdf (779.2Kb)
Published version (PDF)
Date
2021-07-19
Type
Journal article
Tidsskriftartikkel

Author
Leikanger, Per Roald
Abstract
Navigating the world is a fundamental ability for any living entity. Accomplishing the same degree of freedom in technology has proven to be difficult. The brain is the only known mechanism capable of voluntary navigation, making neuroscience our best source of inspiration toward autonomy. Assuming that state representation is key, we explore the difference in how the brain and the machine represent the navigational state. Where Reinforcement Learning (RL) requires a monolithic state representation in accordance with the Markov property, Neural Representation of Euclidean Space (NRES) reflects navigational state via distributed activation patterns. We show how NRES-Oriented RL (neoRL) agents are possible before verifying our theoretical findings by experiments. Ultimately, neoRL agents are capable of behavior synthesis across state spaces – allowing for decomposition of the problem into smaller spaces, alleviating the curse of dimensionality.
Is part of
Leikanger, P.R. (2022). Autonomous Navigation in (the Animal and) the Machine. (Doctoral thesis). https://hdl.handle.net/10037/25518.
Publisher
MIT Press
Citation
Leikanger PR: Decomposing the Prediction Problem; Autonomous Navigation by neoRL Agents. In: Cejkova J, Holler, Soros, Witkowski O. ALIFE 2021: Proceedings of the Artificial Life Conference 2021, 2021. MIT Press
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (teknologi og sikkerhet) [361]
Copyright 2021 Massachusetts Institute of Technology

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)