ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Lagrangian Snow‐Evolution System for Sea‐Ice Applications (SnowModel‐LG): Part I – Model Description

Permanent link
https://hdl.handle.net/10037/24800
DOI
https://doi.org/10.1029/2019JC015913
Thumbnail
View/Open
article.pdf (10.60Mb)
Published version (PDF)
Date
2020-08-06
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Liston, Glen E.; Itkin, Polona; Stroeve, Julienne C.; Tschudi, Mark; Stewart, J. Scott; Pedersen, Stine Højlund; Reinking, A.K.; Elder, Kelly
Abstract
A Lagrangian snow-evolution model (SnowModel-LG) was used to produce daily, pan-Arctic, snow-on-sea-ice, snow property distributions on a 25 × 25-km grid, from 1 August 1980 through 31 July 2018 (38 years). The model was forced with NASA's Modern Era Retrospective-Analysis for Research and Applications-Version 2 (MERRA-2) and European Centre for Medium-Range Weather Forecasts (ECMWF) ReAnalysis-5th Generation (ERA5) atmospheric reanalyses, and National Snow and Ice Data Center (NSIDC) sea ice parcel concentration and trajectory data sets (approximately 61,000, 14 × 14-km parcels). The simulations performed full surface and internal energy and mass balances within a multilayer snowpack evolution system. Processes and features accounted for included rainfall, snowfall, sublimation from static-surfaces and blowing-snow, snow melt, snow density evolution, snow temperature profiles, energy and mass transfers within the snowpack, superimposed ice, and ice dynamics. The simulations produced horizontal snow spatial structures that likely exist in the natural system but have not been revealed in previous studies spanning these spatial and temporal domains. Blowing-snow sublimation made a significant contribution to the snowpack mass budget. The superimposed ice layer was minimal and decreased over the last four decades. Snow carryover to the next accumulation season was minimal and sensitive to the melt-season atmospheric forcing (e.g., the average summer melt period was 3 weeks or 50% longer with ERA5 forcing than MERRA-2 forcing). Observed ice dynamics controlled the ice parcel age (in days), and ice age exerted a first-order control on snow property evolution.
Publisher
Wiley
Citation
Liston, Itkin, Stroeve, Tschudi, Stewart, Pedersen SH, Reinking A, Elder. A Lagrangian Snow‐Evolution System for Sea‐Ice Applications (SnowModel‐LG): Part I – Model Description. Journal of Geophysical Research (JGR): Oceans. 2020
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]
Copyright 2020 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)