Show simple item record

dc.contributor.advisorSkalko-Basnet, Natasa
dc.contributor.authorCauzzo, Jennifer
dc.date.accessioned2022-05-25T21:43:24Z
dc.date.available2022-05-25T21:43:24Z
dc.date.issued2022-06-10
dc.description.abstractNanocarriers have brought several medical advances through better diagnostics and improved drug therapy. Yet, many promising preclinical findings were never translated into clinical success, consequently slowing drug development, and increasing its financial burden. By reliably predicting the nanoparticle fate at in vitro stages, the disappointment of suboptimal in vivo outcome could be avoided. To tackle the challenges of in vitro settings, this project aimed at gaining deeper insight on the interaction between nanocarriers and biological environment. Specifically, advance microscopy tools were used to visualize, characterize, and follow the biological fate of nanocarriers. As a back-to-basics approach, liposomes were chosen as model nanocarriers for their versatility, biocompatibility, and clinical relevance. When including a fluorescent molecule in the liposomal formulation, fluorescence dye and nanocarrier were found to affect each other’s properties in a manner dependent on environmental conditions (e.g., temperature, time, medium, and dye-specific chemistry). The fluctuations of fluorescence in the sample were further analyzed through image processing algorithms to obtain super resolution information from a diffraction-limited multi-frame acquisition. In parallel, to overcome some of the disadvantages often linked to the use of fluorescence, quantitative phase microscopy was optimized as a complementary label-free technique for the localization and characterization of liposomes in their hydrate state. Finally, fluorescence and label-free imaging were combined to determine the integrity of liposomes in nanofibers for topical administration. To understand the behavior of liposomes in cell culture, their internalization was followed using high throughput screenings, based on flow cytometry. These batch-mode results were validated in flow imaging and confocal microscopy. The behavior of liposomes, with and without PEG-coating, was compared in terms of intracellular localization and overall cellular response, resorting to the combination of fluorescence and label-free imaging (here, confocal and electron microscopy). Volumetric image correlation was then attempted, discussing benefits and limitations of the methods involved.en_US
dc.description.abstractNanobærere har brakt med seg flere medisinske fordeler gjennom bedre diagnostikk og legemiddelterapi. Likevel er det mange prekliniske funn som aldri har blitt omsatt til klinisk suksess. Dette har resultert i langsommere legemiddelutvikling og økt finansiell byrde. Gjennom pålitelig bestemmelse av nanopartiklers skjebne under in vitro stadier kan man unngå skuffelsen av suboptimale in vivo resultater. For å håndtere utfordringene innenfor in vitro betingelser, sikter dette prosjektet på å oppnå dypere forståelse av interaksjonene mellom nanobærere og de biologiske omgivelsene. Her ble avanserte mikroskopiske verktøy brukt til å visualisere, karakterisere og følge den biologiske skjebnen til nanobærerne. Gjennom en tilnærming basert på grunnleggende prinsipper, ble liposomer valgt som modell for nanobærerne på grunn av deres allsidighet, biokompatibilitet og kliniske relevans. Når man inkluderte et fluorescerende molekyl i den liposomale formuleringen fant man ut at det fluorescerende fargestoffet og nanobæreren påvirket hverandres egenskaper på en måte som er avhengig av miljøforhold (f.eks. temperatur, tid, medium og kjemi spesifikt for fargestoffet). Fluktueringen av fluorescens i prøven ble videre analysert gjennom algoritmer for bildeprosessering for å oppnå informasjon om superoppløsning fra en diffraksjonsbegrenset datafangst gjennom flere billedtakninger. Parallelt, for å omgå noen av ulempene som ofte er knyttet opp mot bruk av fluorescens, ble kvantitativ fasemikroskopi optimalisert som en komplementær merkingsfri teknikk for lokalisering og karakterisering av liposomer i hydrert tilstand. Til slutt ble fluorescerende og merkingsfri billedtakning kombinert for å se på integriteten til liposomer i nanofibre laget for topikal administrasjon. For å forstå oppførselen til liposomer i cellekulturer ble deres internalisering fulgt gjennom screening av høyt volum, basert på flowcytometri. Disse resultatene ble validert gjennom flow imaging og konfokalmikroskopi. Oppførselen til liposomer, med og uten PEG-overtrekk, ble sammenlignet med hensyn til intracellulær lokalisering og total cellulær respons, gjennom en kombinasjon av fluorescens og merkingsfri billedtakning (konfokal og elektronmikroskopi). Volumetrisk bildekorrelasjon ble deretter utforsket gjennom drøfting av fordeler og begrensninger ved de involverte metodene.en_US
dc.description.doctoraltypeph.d.en_US
dc.description.popularabstractNanocarriers are small, mostly spherical structure of around 100-200 nm, which changed clinical therapy with the so-called nanomedicine. We all witnessed a huge impact the lipid-based nanocarriers had in delivery of Covid-vaccines, confirming not only that nanomedicine is here to stay, but also that success is reachable. However, to avoid disappointment in animal and human studies, we dived into deeper characterization of the most relevant nanocarriers, liposomes, to understand and predict the in vivo challenges. Following the concept that seeing is believing, we focused on using advanced microscopy as a tool to characterize and understand nanocarriers, their interactions with biological environment, and their accumulation inside the cells. Fluorescence imaging was the horsepower of this work, to which we added some options that do not require bright molecules to begin with. Nanomedicine is the present and future of medicine. We propose advance microscopy as tool to achieve it faster.en_US
dc.description.sponsorshipThis project has received funding from the European Union's 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreemeent No. 766181.en_US
dc.identifier.urihttps://hdl.handle.net/10037/25291
dc.language.isoengen_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.relation.haspart<p>Paper I: Cauzzo, J., Nystad, M., Holsæter, A.M., Basnet, P. & Škalko-Basnet, N. (2020). Following the Fate of Dye-Containing Liposomes In Vitro. <i>International Journal of Molecular Sciences, 21</i>(14), 4847. Also available in Munin at <a href=https://hdl.handle.net/10037/18795>https://hdl.handle.net/10037/18795</a>. <p>Paper II: Opstad, I.S., Acuña, S., Villegas Hernandez, L.E., Cauzzo, J., Škalko-Basnet, N., Ahluwalia, B.S. & Agarwal, K. Fluorescence fluctuations-based super-resolution microscopy techniques: an experimental comparative study. (Manuscript). Also available in arXiv at <a href=https://doi.org/10.48550/arXiv.2008.09195>https://doi.org/10.48550/arXiv.2008.09195</a>. <p>Paper III: Cauzzo, J., Jayakumar, N., Ahluwalia, B.S., Ahmad, A. & Škalko-Basnet, N. (2021). Characterization of Liposomes Using Quantitative Phase Microscopy (QPM). <i>Pharmaceutics, 13</i>(5), 590. Also available in Munin at <a href=https://hdl.handle.net/10037/21570>https://hdl.handle.net/10037/21570</a>. <p>Paper IV: Cauzzo, J., Darif, N., Schulte-Werning, L.V., Lindeløff Rustad, E.A., Holsæter, A.M., Schwab, Y. & Škalko-Basnet, N. Correlative microscopy provides insights on localization, internalization, and subcellular trafficking of liposomes. (Manuscript).en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/766181/EU/Super-resolution optical microscopy of nanosized pore dynamics in endothelial cells/DeLIVER/en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2022 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)en_US
dc.subjectVDP::Medical disciplines: 700::Basic medical, dental and veterinary science disciplines: 710::Biopharmacy: 736en_US
dc.subjectVDP::Medisinske Fag: 700::Basale medisinske, odontologiske og veterinærmedisinske fag: 710::Biofarmasi: 736en_US
dc.titleMicroscopy Meets Nanomedicine: The Challenge of Liposomes. Selecting, Understanding, and Adapting Imaging Techniques to Localize and Characterize Nanocarriersen_US
dc.typeDoctoral thesisen_US
dc.typeDoktorgradsavhandlingen_US


File(s) in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)