ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Is Glacial Meltwater a Secondary Source of Legacy Contaminants to Arctic Coastal Food Webs?

Permanent link
https://hdl.handle.net/10037/25654
DOI
https://doi.org/10.1021/acs.est.1c07062
Thumbnail
View/Open
article.pdf (2.701Mb)
Published version (PDF)
Date
2022-04-26
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Mcgovern, Maeve; Warner, Nicholas Alexander; Borgå, Katrine; Evenset, Anita; Carlsson, Pernilla Marianne; Skogsberg, Stina Linnea Emelie; Søreide, Janne; Ruus, Anders; Christensen, Guttorm; Poste, Amanda
Abstract
Climate change-driven increases in air and sea temperatures are rapidly thawing the Arctic cryosphere with potential for remobilization and accumulation of legacy persistent organic pollutants (POPs) in adjacent coastal food webs. Here, we present concentrations of selected POPs in zooplankton (spatially and seasonally), as well as zoobenthos and sculpin (spatially) from Isfjorden, Svalbard. Herbivorous zooplankton contaminant concentrations were highest in May [e.g., ∑polychlorinated biphenyls (8PCB); 4.43, 95% CI: 2.72−6.3 ng/g lipid weight], coinciding with the final stages of the spring phytoplankton bloom, and lowest in August (∑8PCB; 1.6, 95% CI: 1.29−1.92 ng/g lipid weight) when zooplankton lipid content was highest, and the fjord was heavily impacted by sediment-laden terrestrial inputs. Slightly increasing concentrations of α-hexachlorocyclohexane (α-HCH) in zooplankton from June (1.18, 95% CI: 1.06−1.29 ng/g lipid weight) to August (1.57, 95% CI: 1.44−1.71 ng/g lipid weight), alongside a higher percentage of α-HCH enantiomeric fractions closer to racemic ranges, indicate that glacial meltwater is a secondary source of αHCH to fjord zooplankton in late summer. Except for α-HCH, terrestrial inputs were generally associated with reduced POP concentrations in zooplankton, suggesting that increased glacial melt is not likely to significantly increase exposure of legacy POPs in coastal fauna.
Publisher
American chemical society
Citation
Mcgovern, Warner, Borgå, Evenset, Carlsson, Skogsberg, Søreide, Ruus, Christensen, Poste. Is Glacial Meltwater a Secondary Source of Legacy Contaminants to Arctic Coastal Food Webs?. Environmental Science and Technology. 2022;56(10):6337-6348
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (arktisk og marin biologi) [1632]
Copyright 2022 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)