ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Virtual Power Plants and Integrated Energy System: Current Status and Future Prospects

Permanent link
https://hdl.handle.net/10037/25913
DOI
https://doi.org/10.1007/978-3-030-72322-4_73-1
Thumbnail
View/Open
article.pdf (1.266Mb)
Accepted manuscript version (PDF)
Date
2022
Type
Chapter
Bokkapittel

Author
Mishra, Sambeet; Bordin, Chiara; Leinakse, Madis; Wen, Fushuan; J. Howlett, Robert; Palu, Ivo
Abstract
The power system is undergoing a digitalization, decarbonization, and decentralization. Economic incentives along with resiliency and reliability concerns are partly driving the transition. In the process of decentralization, local energy markets are forming at various places. A virtual power plant (VPP) is a by-product of this digitalization capitalizing on the opportunity to further promote renewable resources, demand-side flexibility, and sector coupling. A VPP enables resilient operation of power system while assembling small- to large-scale generation units and demand-side flexibility. Specifically, during the pandemic uncertainty, virtual work meets virtual power plants. A VPP has two both cyber and physical components. On one side, the physical component presents the operational challenges in terms of security, stability, reliability, and efficiency. On the other side, the cyber component introduces the challenges on communication, computation, security, and privacy. A VPP synthesizes synergies between the cyber and physical components, thereby harnessing the potential in terms of enhancing energy efficiency and reducing the cost. The objective of this chapter is to introduce the virtual power plant and integrated energy system with associated concepts, terminology, and relation thereof. The secondary objective is to categorize the key concepts while highlighting subsequent issues in planning, operations, and control of a VPP with an integrated energy system. Moreover, this chapter knits together the concepts and challenges in realizing virtual power plants with integrated energy systems.
Publisher
Springer
Citation
Mishra S, Bordin C, Leinakse, Wen F, J. Howlett, Palu I. Virtual Power Plants and Integrated Energy System: Current Status and Future Prospects. Springer Handbooks. 2022:1-31
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (informatikk) [482]
Copyright 2022 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)