ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluation of crystalline structure quality of Czochralski-silicon using near-infrared tomography

Permanent lenke
https://hdl.handle.net/10037/26011
DOI
https://doi.org/10.1016/j.jcrysgro.2022.126527
Thumbnail
Åpne
article.pdf (4.020Mb)
Publisert versjon (PDF)
Dato
2022-01-22
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Jensen, Mathias Novik; Hellesø, Olav Gaute
Sammendrag
In this work, three silicon samples are subject to tomographic scans using a 1.6μm laser. The samples were prematurely terminated due to anomalies during the Czhochralski-process. They are taken as analogues of the in situ crystal, where one sample has known aberrant structure in its lowermost 45 mm. The results of the tomographic scans show a distinct difference in transmission profile between the material of known poor monocrystalline structure and assumed good structure. Three different analysis tools are constructed and applied to quantify the quality of the structure from the results of the tomographic scans. The first two analysis tools are applied as correlation filters constructed from patterns resembling the indicative transmission profiles of highquality structure, one pattern being an ideal square wave and the other being experimentally determined from the measurements. Both correlation filters yield clear differentiation of low- vs. high-quality material. The final analysis tool is a deep convolutional neural network (deep CNN) evolved from a predetermined architecture configuration using a genetic algorithm. The trained CNN is shown to differentiate the usable high-quality material from the unusable material with a 98.7% accuracy on a testing set of 76 profiles and successfully assigns quality factors to the material that are in good agreement with the correlation filters and previous observations.
Er en del av
Jensen, M.N. (2023). Raman-spectroscopy of extracellular vesicles and self-supervised deep learning. (Doctoral thesis). https://hdl.handle.net/10037/31854.
Forlag
Elsevier
Sitering
Jensen, Hellesø. Evaluation of crystalline structure quality of Czochralski-silicon using near-infrared tomography. Journal of Crystal Growth. 2022;583
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2022 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring