ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Physics-Guided Loss Functions Improve Deep Learning Performance in Inverse Scattering

Permanent lenke
https://hdl.handle.net/10037/26220
DOI
https://doi.org/10.1109/TCI.2022.3158865
Thumbnail
Åpne
article.pdf (3.040Mb)
Publisert versjon (PDF)
Dato
2022-03-15
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Liu, Zicheng; Roy, Mayank; Prasad, Dilip K.; Agarwal, Krishna
Sammendrag
Solving electromagnetic inverse scattering problems (ISPs) is challenging due to the intrinsic nonlinearity, ill-posedness, and expensive computational cost. Recently, deep neural network (DNN) techniques have been successfully applied on ISPs and shown potential of superior imaging over conventional methods. In this paper, we discuss techniques for effective incorporation of important physical phenomena in the training process.We show the importance of including near-field priors in the learning process of DNNs. To this end, we propose new designs of loss functions which incorporate multiple-scattering based near-field quantities (such as scattered fields or induced currents within domain of interest). Effects of physics-guided loss functions are studied using a variety of numerical experiments. Pros and cons of the investigated ISP solvers with different loss functions are summarized.
Forlag
IEEE
Sitering
Liu, Roy, Prasad, Agarwal. Physics-Guided Loss Functions Improve Deep Learning Performance in Inverse Scattering. IEEE Transactions on Computational Imaging. 2022;8:236-245
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (informatikk) [481]
Copyright 2022 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring