ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Áika: A Distributed Edge System for AI Inference

Permanent lenke
https://hdl.handle.net/10037/26244
DOI
https://doi.org/10.3390/bdcc6020068
Thumbnail
Åpne
article.pdf (626.4Kb)
Publisert versjon (PDF)
Dato
2022-06-17
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Alslie, Joakim Aalstad; Ovesen, Aril Bernhard; Nordmo, Tor-Arne Schmidt; Johansen, Håvard D.; Halvorsen, Pål; Riegler, Michael; Johansen, Dag
Sammendrag
Video monitoring and surveillance of commercial fisheries in world oceans has been proposed by the governing bodies of several nations as a response to crimes such as overfishing. Traditional video monitoring systems may not be suitable due to limitations in the offshore fishing environment, including low bandwidth, unstable satellite network connections and issues of preserving the privacy of crew members. In this paper, we present Áika, a robust system for executing distributed Artificial Intelligence (AI) applications on the edge. Áika provides engineers and researchers with several building blocks in the form of Agents, which enable the expression of computation pipelines and distributed applications with robustness and privacy guarantees. Agents are continuously monitored by dedicated monitoring nodes, and provide applications with a distributed checkpointing and replication scheme. Áika is designed for monitoring and surveillance in privacy-sensitive and unstable offshore environments, where flexible access policies at the storage level can provide privacy guarantees for data transfer and access.
Er en del av
Nordmo, T.A.S. (2023). Dutkat: A Privacy-Preserving System for Automatic Catch Documentation and Illegal Activity Detection in the Fishing Industry. (Doctoral thesis). https://hdl.handle.net/10037/29768.
Forlag
MDPI
Sitering
Alslie JA, Ovesen AB, Nordmo TA, Johansen HJ, Halvorsen P, Riegler M, Johansen D. Áika: A Distributed Edge System for AI Inference. Big Data and Cognitive Computing. 2022
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (informatikk) [482]
Copyright 2022 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring